Academic literature on the topic 'IV-VI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IV-VI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IV-VI"
Sharrock, R. "Suburban Odes IV - VI." English 34, no. 148 (March 1, 1985): 39–42. http://dx.doi.org/10.1093/english/34.148.39.
Full textMarfaing, Y. "Optoelectronics with II–VI and IV–VI compounds." Materials Science and Engineering: B 9, no. 1-3 (July 1991): 169–77. http://dx.doi.org/10.1016/0921-5107(91)90167-t.
Full textBAUER, G., and W. JANTSCH. "IV-VI COMPOUND DOPING SUPERLATTICES." Le Journal de Physique Colloques 48, no. C5 (November 1987): C5–293—C5–300. http://dx.doi.org/10.1051/jphyscol:1987564.
Full textBauer, G., H. Pascher, and M. Kriechbaum. "Superlattices of IV-VI Compounds." Physica Scripta T19A (January 1, 1987): 147–57. http://dx.doi.org/10.1088/0031-8949/1987/t19a/021.
Full textSullens, Tyler A., and Thomas E. Albrecht-Schmitt. "Thorium(IV) chromate(VI) monohydrate." Acta Crystallographica Section E Structure Reports Online 62, no. 12 (November 22, 2006): i258—i260. http://dx.doi.org/10.1107/s1600536806047416.
Full textSizov, F. F. "IV-VI Narrow-Gap Superlattices." Acta Physica Polonica A 79, no. 1 (January 1991): 83–96. http://dx.doi.org/10.12693/aphyspola.79.83.
Full textAuliya Vilda Ghasya, Dyoty, Asmayani Salimi, and Rio Pranata. "ANALISIS KETERLAKSANAAN PEMBELAJARAN JARAK JAUH MATA PELAJARAN MATEMATIKA DI KELAS TINGGI SEKOLAH DASAR PADA MASA PANDEMI COVID-19." Numeracy 8, no. 1 (June 28, 2021): 41–57. http://dx.doi.org/10.46244/numeracy.v8i1.1424.
Full textYang, Junqiang, Yawen Chen, Juan Tong, Yin Su, Xiaoqing Gao, Jiangang He, Keliang Shi, Xiaolin Hou, and Wangsuo Wu. "Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent." Radiochimica Acta 109, no. 5 (February 17, 2021): 377–87. http://dx.doi.org/10.1515/ract-2020-0087.
Full textVolkov, Boris A. "Electronic properties of narrow gap IV VI semiconductors." Uspekhi Fizicheskih Nauk 173, no. 9 (2003): 1013. http://dx.doi.org/10.3367/ufnr.0173.200309j.1013.
Full textKurti, Dilaver. "Tumat IV, V, VI, VII të Burrelit /Les tumuli IV, V, VI, VII de Burrel." Iliria 17, no. 1 (1987): 85–115. http://dx.doi.org/10.3406/iliri.1987.1429.
Full textDissertations / Theses on the topic "IV-VI"
Neves, Antonio Alvaro Ranha. "Nanocristais coloidais de semicondutores II-VI e IV-VI." [s.n.], 2002. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277507.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-01T05:35:37Z (GMT). No. of bitstreams: 1 Neves_AntonioAlvaroRanha_M.pdf: 4321994 bytes, checksum: 3488120f609c5c1d068a723e3000e833 (MD5) Previous issue date: 2002
Resumo: Nesta tese são estudados nanocristais coloidais de semicondutores II-VI e IV-VI no regime de confinamento quântico (pontos quânticos). Este trabalho em sistemas coloidais é o primeiro do nosso grupo. O interesse nesse tipo de sistema ocorre para poder explicar a quebra de linha do estado fundamental, devido à presença do "stress-strain" na interface dos pontos quânticos em matriz vítrea. As sínteses destes nanocristais utilizam métodos recentes para fabricar nanocristais quase monodispersos de CdSe com raios da ordem de 1,7 nm e dispersão de 3,8%. Pode-se observar a dependência do tamanho com adição de água no sistema, cuja tendência é aumentar. Apresentamos também uma discussão sobre a cinética da reação com ênfase no alargamento e estreitamento da distribuição de tamanho, dependendo do tamanho do raio crítico. Além da síntese dos colóides, as técnicas experimentais adotadas nesse trabalho foram a microscopia eletrônica de transmissão e a absorção óptica. Para a absorção óptica, foi aplicada a teoria do k . p , já estudada pelo nosso grupo, desta vez aplicada a um material de estrutura wurtzita. Foi elaborado um programa para determinar os níveis de energia para os parâmetros tabelados. Os resultados deste modelo foram utilizados em nossas interpretações dos resultados experimentais
Abstract:This thesis studies colloidal nanocrystals of II-VI and IV-VI in the quantum confinement regime (quantum dots). This work with colloidal systems is the first in our group. The interest on these systems comes from the fact that it could explain the splitting of the fundamental state, due to the presence of stress-strain on the quantum dots interface with the glass matrix. The synthesis of these nanocrystals utilizes recent methods to produce nearly monodisperse CdSe nanocrystals with radius of about 1,7 nm and a dispersion of 3,8%. The dependence of size when water is added to the system can be observed, whose tendency is to increase. We have presented a discussion about the reaction kinetics with emphasis on the broadening and narrowing of the size distribution, depending on the size of the critical radius. Besides the colloidal synthesis, the experimental techniques adopted in this work where: transmission electron microscopy and optical absorption. For the optical absorption, we used the theory, already studied by our group, now applied to a wurtzite material. A program was elaborated to determine the energy levels for tabulated parameters. The results of this model were used in our interpretation of the experimental results
Mestrado
Física
Mestre em Física
Romano, Ricardo. "Nanocompositos e nanoestruturas de semicondutores das familias II-VI e IV-VI." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249039.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-08T20:29:31Z (GMT). No. of bitstreams: 1 Romano_Ricardo_D.pdf: 7756171 bytes, checksum: bd3a8af5af06fb7ec50b3cd881d41bfd (MD5) Previous issue date: 2007
Resumo: O desenvolvimento das nanoestruturas e suas aplicações compõem uma das áreas científicas em mais dinâmica ascensão. Grande parte dos estudos na área concentra-se nos métodos de preparação e, de uma forma geral, podem ser divididos em métodos físicos ou químicos. Os primeiros reúnem processos baseados em sistemas de feixes moleculares ou litografia, enquanto os últimos envolvem reações químicas em meios onde o crescimento dos cristais possa ser controlado e estabilizado. Nesta Tese foram preparadas nano(micro)estruturas de semicondutores II-VI e IV-VI a partir de três abordagens químicas distintas. Na primeira, foram obtidos nanocompósitos pelo encapsulamento de nanocristais de CdS e PbS no ambiente microporoso de um vidro transparente, comercialmente conhecido por Vycor®. A técnica envolvida foi a impregnação de peças do vidro com precursor single-source seguida por tratamento térmico visando a pirólise in situ do precursor. Efeitos de confinamento quântico no espectro óptico e micrografias eletrônicas de transmissão confirmaram a natureza nanométrica da fase ocluída. Na segunda, foram obtidos cristais nano e micrométricos de CdS, PbS e ZnS através da técnica conhecida por moldagem molecular por solvente coordenante, na qual precursores single-source foram tratados solvotermicamente em solventes coordenantes e levaram à formação de bastões de CdS, microestrelas de PbS e intercalatos de ZnS com etilenodiamina. Na última abordagem, nanocristais coloidais de CdSe com diferentes faixas de tamanho (2 a 7 nm) foram preparados com a finalidade de se estudar o comportamento da estrutura local e dinâmica vibracional do CdSe em função da redução no tamanho e substituição do agente de recobrimento usado na síntese
Abstract: The development of nanostructures and their applications constitute one of the most exciting scientific areas. A great number of studies in this area concern the preparation methods. Generally, they are classified in physical and chemical methods. The former class is based on molecular beam and lithography techniques, while the latter involves chemical reactions where crystal growth can be controlled and stabilized. In this Thesis, II-VI and IV-VI semiconductor nano(micro)structures were prepared according to three different approaches. In the first one, nanocomposites were obtained through the encapsulation of CdS and PbS nanocrystals into a porous and transparent commercial glass, named Vycor®. Glass pieces were impregnated with single-source precursors and, then, thermally treated in order to achieve in situ pyrolysis, making use of the porous environment as the stabilizer for the crystal growth. Quantum confinement effects in the optical spectrum and transmission electron micrographs characterized the nanometric dimensions of the occluded phase. In the second approach, a technique known as molecular templating by coordenant solvents was employed in order to obtaining CdS, PbS and ZnS nano(micro)crystals showing unusual morphologies. Single-source precursors were solvothermically treated in such solvents leading to CdS nanowires, PbS microstars and ZnS-ethylenediamine intercalates. In the last approach, colloidal CdSe nanocrystals with different size ranges (2 up to 7 nm) were prepared and employed in the study of the local structure and vibrational dynamics of CdSe as a function of crystal size reduction and substitution of the covering agent used in the synthetic procedure
Doutorado
Quimica Inorganica
Doutor em Ciências
Liffey, Ryan Michael. "Asymmetric synthesis with sulfur(IV) and sulfur(VI)." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49793/.
Full textWalker, Nicholas J. "Nonlinear elastic and electrical behaviour in some (II-VI) and (IV-VI) semiconductors." Thesis, University of Bath, 1986. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373402.
Full textMoreira, Wendel Lopes. "Síntese e estabilização de pontos quânticos coloidais de semicondutores II-VI e IV-VI." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277440.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica
Made available in DSpace on 2018-08-04T09:35:25Z (GMT). No. of bitstreams: 1 Moreira_WendelLopes_M.pdf: 8515504 bytes, checksum: e80c0c01881efcfade7d7e39b55ade9a (MD5) Previous issue date: 2005
Resumo: Não informado
Abstract: Not informed.
Mestrado
Física da Matéria Condensada
Mestre em Física
Steczek, Lukasz. "Complexation of actinides Am(III), Th(IV), Pu(IV) and U(VI) with poly-N-dentate ligands SO3-Ph-BTP and SO3-Ph-BTBP." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT238/document.
Full textThe complexation of Th(IV), U(VI), Pu(IV) and Am(III) with the hydrophilic ligand SO3-Ph-BTP4–, and of Th(IV) and Pu(IV) with the hydrophilic SO3-Ph-BTBP4– ligand was studied. These new hydrophilic aromatic poly-N-dentate ligands are proposed, in the frame of recycling spent nuclear fuel, for a selective separation of actinides(III) from lanthanides(III) and from other fission products. The aim of this work was to compare the ability of the actinide ions to coordinate these N-dentate molecules. After some disappointing tests with classical spectroscopies, the method of liquid-liquid (solvent) extraction was applied to reach this goal. The extraction system consisted of two chelating ligands that competed for the actinide ions: a lipophilic tri-O-dentate neutral molecule of dioctylamide (TODGA) and a hydrophilic tri(or tetra)-N-dentate anion SO3-Ph-BT(B)P4–. The simple model we applied, well known in literature, considered chemical equilibria resulting in accumulation of the metal complexes with the lipophilic ligand in the organic phase, and those with the hydrophilic ligand – in the aqueous phase. With increasing concentration of the hydrophilic ligand (the concentration of the lipophilic ligand being constant) the equilibrium shifted towards the complexes with the hydrophilic ligand, and the distribution ratio of the metal decreased.The results have been interpreted in terms of the formation of 1:1 and 1:2 actinide complexes with tridentate SO3-Ph-BTP4– and only single 1:1 An(IV) complexes with tetradentate SO3-Ph-BTBP4– ligands in the two-phase systems studied. Two series of conditional stability constants of the complexes have been determined in our experiments: one set of the conditional stability constants, αL,i, related to 1 M nitrate media, whereas the other, βL,i, – to aqueous solutions of ionic strength I = 1 M, where the complexation by nitrates was taken into account. In the latter case, when the effect of the actinide complexation by nitrates was deducted, the conditional stability constants, βL,1, of the actinide complexes with SO3-Ph-BTP4– increase in the order UO22+ < Am3+ < Th4+ < Pu(IV), in accordance with the increasing z/r2 ratio (where z is the formal charge and r is the radius of the metal ion). The analysis of the βL,i values suggests that the electrostatic effects play the major role in the formation of the complexes between the poly-N-dentate ligands and actinides ions.Concerning the complexation of Am3+ with the tri-N-dentate SO3-Ph-BTP4– ligand, if we compare our results with the literature values for the analogous Cm3+ complexes studied by a spectroscopic (TRLFS) technique, the stability constants of 1:1 and 1:2 complexes of Am3+ are much lower, and its 1:3 complex has not been found by the solvent extraction method. The stability constants of the SO3-Ph-BTP and SO3-Ph-BTBP complexes with the actinides(IV) have not been reported yet in literature, therefore such comparison was impossible in this case. However, the expected 1:3 complexes of Pu(IV) and Th(IV) with the SO3-Ph-BTP4– ligand have not been found in our solvent extraction experiments as well. Similarly, only 1:1 Pu and Th complexes with the tetra-N-dentate SO3-Ph-BTBP4– ligand have been found by solvent extraction, in spite of that the 1:2 complexes were also expected. These surprising results could be a result of oversimplification of the used model of extraction, and should be completed by further spectroscopic studies to identify all the complexes formed in the two-phase system studied. Nevertheless, the stability constants determined in the solvent extraction experiments (“practical” stability constants) allow us to correctly describe and to predict the behaviour of metal ions in such two-phase systems
Blumers, Mathias [Verfasser]. "Thermoelektrische Eigenschaften dünner Schichten und Übergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern / Mathias Blumers." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1023189968/34.
Full textCosta, Vânia Aparecida da. "Efeitos termoelétricos em ligas e nanoestruturas de semicondutores IV-VI." Instituto Nacional de Pesquisas Espaciais (INPE), 2015. http://urlib.net/sid.inpe.br/mtc-m21b/2015/01.30.11.47.
Full textThis work presents a theoretical study of thermoelectric properties of IV-VI semiconductor alloys and nanostructures. These materials have a been widely studied because they have high figure of merit and their nanostructures (superlattices, quantum wires and quantum wells) are able to improving the thermoelectric response. The theoretical models, developed until now, either have not been able to model quantitatively the measured coefficients and neither to determine the main mechanism responsible for thermoelectric performance. To contribute in this area, the transport coefficients of \emph{Pb$_{1-x}$Sn$_{x}$Te} alloys, quantum wires and \emph{PbT} e superlattices were studied. From \emph{k . p} model, known as Dimmock model, it was calculated the band structure including non parabolicity, anisotropy and multiple valleys effects. The bulk transport coefficients and superlattice were calculated within the semiclassical formalism which uses the Boltzmann equation solution in the relaxation time approximation. In the quantum wire case, it was used the Landauer formalism, where the transport coefficients are given in terms of the transmission probability of electrons in the ballistic regime, between contacts represented by reservoirs in equilibrium. Based on the analysis of temperature variations, carrier concentration, percentage of tin percentage in bulk, geometry and parameters of nanostructures, were discussed the mechanism to increase the thermoelectric efficiency of these materials. The results indicate that the model used for the bulk has a good agreement with the experiment and the increase of tin in \emph{Pb$_{1-x}$Sn$_{x}$Te} alloys increase the figures of merit values. A gain factor has been introduced to study the thermoelectric performance due to changes in dimensionality and nanostructures packaging within a finite-3D bulk. Changes in the thermoelectric efficiency of IV -VI superlattices can be obtained exploiting its anisotropy, this implies new possilibidades of application in thermoelectric devices.
Santos, Osvaldo Joaquim dos. "Etude de mécanisme de transport sur les photodétecteurs IV-VI." Montpellier 2, 1995. http://www.theses.fr/1995MON20090.
Full textBrock, Michele. "Eight-membered PNS heterocycles containing S(IV) and S(VI) centers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ31332.pdf.
Full textBooks on the topic "IV-VI"
Chaneva-Dechevska, Neli. Rannokhristii︠a︡nskata arkhitektura v Bŭlgarii︠a︡, IV-VI v. Sofii︠a︡: Universitetsko izd-vo "Sv. Kliment Okhridski", 1999.
Find full textChaneva-Dechevska, Neli. Rannokhristii︠a︡nskata arkhitektura v Bŭlgarii︠a︡, IV-VI v. Sofii︠a︡: Universitetsko izd-vo "Sv. Kliment Okhridski", 1999.
Find full textRussia), Kraevedcheskie chtenii͡a (Saratov. Kraevedcheskie chtenii͡a: Doklady i soobshchenii͡a IV-VI chteniĭ. Saratov: Izd-vo Saratovskogo universiteta, 1994.
Find full textBolgov, Nikolaĭ Nikolaevich. Kulʹturnyĭ kontinuitet v Severnom Prichernomorʹe IV-VI vv. Nizhniĭ Novgorod: Nizhegorodskiĭ un-t, 2001.
Find full textBook chapters on the topic "IV-VI"
Cohen, Marvin L., and James R. Chelikowsky. "IV-VI Semiconductors." In Springer Series in Solid-State Sciences, 172–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61338-8_11.
Full textCohen, Marvin L., and James R. Chelikowsky. "IV–VI Semiconductors." In Springer Series in Solid-State Sciences, 172–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-97080-1_11.
Full textBauer, G., and H. Pascher. "Semimagnetic IV–VI Compound Semiconductors." In Semimagnetic Semiconductors and Diluted Magnetic Semiconductors, 209–36. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3776-2_9.
Full textLambrecht, Armin, Joachim Nurnus, Harald Beyer, and Harald Böttner. "IV-VI and V-VI Materials for Thermoelectric Nanostructures." In Interface Controlled Materials, 68–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/352760622x.ch11.
Full textMerritt, Justin, and David Castro. "IV(iv)6, vi(VI), and iii(III) (6̂ and 3̂ in the Bass)." In Comprehensive Aural Skills, 214–19. Second edition. | New York: Routledge, 2020.: Routledge, 2020. http://dx.doi.org/10.4324/9780429275814-34.
Full textZhang, Qian, Yu Xiao, Li-Dong Zhao, Eyob Chere, Zhifeng Ren, Xiao Zhang, Cheng Chang, and E. M. Levin. "IV–VI Compounds for Medium Temperatures." In Advanced Thermoelectrics, 107–94. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Series in materials science and engineering: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153766-4.
Full textSpringholz, G., and G. Bauer. "9.1 IV-VI semiconductors: General properties." In Growth and Structuring, 415–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_72.
Full textSpringholz, G., and G. Bauer. "9.2.1 Pseudo-binary IV-VI alloys." In Growth and Structuring, 425–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_74.
Full textSpringholz, G., and G. Bauer. "9.3.5 Growth on IV-VI substrates." In Growth and Structuring, 443–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_80.
Full textAnumala, Vivek, Arunkumar Phurailatpam, and Pranabjyoti Sarma. "Schedules (I-IV and VI-VIII)." In Fruits and Vegetables as Nutraceutical, 54–162. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003230885-14.
Full textConference papers on the topic "IV-VI"
Tomashik, V. N., V. I. Grytsiv, Z. F. Tomashik, and O. V. Seritsan. "Interaction of II-VI, III-VI and IV-VI group semiconductors with metals." In Material Science and Material Properties for Infrared Optoelectronics, edited by Fiodor F. Sizov and Vladimir V. Tetyorkin. SPIE, 1997. http://dx.doi.org/10.1117/12.280466.
Full textZogg, Hans, A. N. Tiwari, Stefan Blunier, Clau Maissen, and Jiri Masek. "Heteroepitaxy of II-VI and IV-VI semiconductors on Si substrates." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24409.
Full textKoenig, J., A. Jacquot, U. Vetter, H. Boettner, A. Lambrecht, and J. Nurnus. "Thermal characterization of IV-VI superlattice MBE films." In 2006 25th International Conference on Thermoelectrics. IEEE, 2006. http://dx.doi.org/10.1109/ict.2006.331273.
Full textWu, Huizhen, Jianxiao Si, Tianning Xu, and Chunfang Cao. "Progress of IV-VI Semiconductor Research in China." In 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368615.
Full textFill, M., F. Felder, M. Rahim, A. Khiar, R. Rodriguez, H. Zogg, and A. Ishida. "IV-VI mid-infrared VECSEL on Si-substrate." In SPIE LASE, edited by Anne C. Tropper. SPIE, 2012. http://dx.doi.org/10.1117/12.905643.
Full textTacke, Maurus. "Mid infrared IV/VI diode laser output characteristics." In Symposium on Integrated Optoelectronics, edited by Luke J. Mawst and Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382088.
Full textSokolov, A. A., D. P. Opra, S. V. Gnedenkov, S. L. Sinebryukhov, E. I. Voit, Y. V. Suschkov, E. B. Modin, S. A. Sarin, V. Y. Mayorov, and V. V. Zheleznov. "Nanostructured anatase TiO2 microtubes doped by Zr(IV), Hf(IV) and Mo(VI)." In ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING: FROM THEORY TO APPLICATIONS: Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998065.
Full textGórska, M., L. Kilanski, A. Podgórni, W. Dobrowolski, R. Szymczak, J. R. Anderson, I. V. Fedorchenko, S. F. Marenkin, V. E. Slynko, and E. I. Slynko. "Magnetic properties of clusters in IV-VI and II-IV-V2diluted magnetic semiconductors." In International Symposium on Clusters and Nanomaterials, edited by Puru Jena and Anil K. Kandalam. SPIE, 2016. http://dx.doi.org/10.1117/12.2234914.
Full textSharma, Neha, Sunanda Sharda, Vineet Sharma, and Pankaj Sharma. "Nonlinear optical properties of IV-V-VI chalcogenide glasses." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791153.
Full textLashkarev, George V., and M. V. Radchenko. "Ferromagnetic and ferroelectric phase transitions in IV-VI semiconductors." In Fifth International Conference on Material Science and Material Properties for Infrared Optoelectronics, edited by Fiodor F. Sizov. SPIE, 2001. http://dx.doi.org/10.1117/12.417771.
Full textReports on the topic "IV-VI"
Szigethy, Geza. Rational Ligand Design for U(VI) and Pu(IV). Office of Scientific and Technical Information (OSTI), August 2009. http://dx.doi.org/10.2172/972716.
Full textDelegard, C. H. Determination of the solubility of Np(IV), Pu(III) - (VI),Am(III) - (VI), and Te(IV), (V) hydroxo compounds in 0.5 - 14 M NaOH solutions. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/331672.
Full textFedoseev, A. M., N. N. Krot, N. A. Budantseva, A. A. Bessonov, M. V. Nikonov, M. S. Grigoriev, A. Y. Garnov, V. P. Perminov, and L. N. Astafurova. Interaction of Pu(IV,VI) hydroxides/oxides with metal hydroxides/oxides in alkaline media. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/665966.
Full textClark, D. L., S. A. Ekberg, D. E. Morris, P. D. Palmer, and C. D. Tait. Actinide(IV) and actinide(VI) carbonate speciation studies by PAS and NMR spectroscopies; Yucca Mountain Project: Milestone report 3031-WBS 1.2.3.4.1.3.1. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/145483.
Full textEnsor, D. D. Solvent extraction of thorium(IV), uranium(VI), and europium(III) with lipophilic alkyl-substituted pyridinium salts. Final report for subcontract 9-XZ2-1123E-1, June 1, 1992--December 1, 1995. Office of Scientific and Technical Information (OSTI), January 1997. http://dx.doi.org/10.2172/426966.
Full textMarcos Morezuelas, Paloma. Gender and Renewable Energy: Wind, Solar, Geothermal and Hydroelectric Energy. Inter-American Development Bank, November 2014. http://dx.doi.org/10.18235/0003068.
Full textMorrison, Andrew, María Hernández Jurado, and Andrea De la Piedra García. Diversidad 2.0: La tecnología como aliada de las empresas latinoamericanas. Inter-American Development Bank, June 2021. http://dx.doi.org/10.18235/0003328.
Full textBedford, Philip, Alexis Long, Thomas Long, Erin Milliken, Lauren Thomas, and Alexis Yelvington. Legal Mechanisms for Mitigating Flood Impacts in Texas Coastal Communities. Edited by Gabriel Eckstein. Texas A&M University School of Law Program in Natural Resources Systems, May 2019. http://dx.doi.org/10.37419/eenrs.mitigatingfloodimpactstx.
Full textCoulson, Saskia, Melanie Woods, Drew Hemment, and Michelle Scott. Report and Assessment of Impact and Policy Outcomes Using Community Level Indicators: H2020 Making Sense Report. University of Dundee, 2017. http://dx.doi.org/10.20933/100001192.
Full textInforme de gestión 2017-2020. Banco de la República de Colombia, February 2021. http://dx.doi.org/10.32468/inf-gest.a17-20.
Full text