To see the other types of publications on this topic, follow the link: Iwasawa's.

Dissertations / Theses on the topic 'Iwasawa's'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Iwasawa's.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Baccari, Kevin J. "Homomorphic Images And Related Topics." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/224.

Full text
Abstract:
We will explore progenitors extensively throughout this project. The progenitor, developed by Robert T Curtis, is a special type of infinite group formed by a semi-direct product of a free group m*n and a transitive permutation group of degree n. Since progenitors are infinite, we add necessary relations to produce finite homomorphic images. Curtis found that any non-abelian simple group is a homomorphic image of a progenitor of the form 2*n: N. In particular, we will investigate progenitors that generate two of the Mathieu sporadic groups, M11 and M11, as well as some classical groups. We will prove their existences a variety of different ways, including the process of double coset enumeration, Iwasawa's Lemma, and linear fractional mappings. We will also investigate the various techniques of finding finite images and their corresponding isomorphism types.
APA, Harvard, Vancouver, ISO, and other styles
2

Lamp, Leonard B. "SYMMETRIC PRESENTATIONS OF NON-ABELIAN SIMPLE GROUPS." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/222.

Full text
Abstract:
The goal of this thesis is to show constructions of some of the sporadic groups such as the Mathieu group, M12, J1, Projective Special Linear groups, PSL(2,8), and PSL(2,11), Unitary group U(3,3) and many other non-abelian simple groups. Our purpose is to find all simple non-abelian groups as homomorphic images of permutation or monomial progenitors, as well grasping a deep understanding of group theory and extension theory to determine groups up to isomorphisms. The progenitor, developed by Robert T. Curtis, is a semi-direct product of the following form: P≅2*n: N = {πw | π ∈ N, w a reduced word in the ti} where 2*n denotes a free product of n copies of the cyclic group of order 2 generated by involutions ti for 1 ≤ i≤ n; and N is a transitive permutation group of degree n which acts on the free product by permuting the involuntary generators by conjugation. Thus we develop methods for factoring by a suitable any number of relations in the hope of finding all non-abelian simple groups, and in particular one of the 26 Sporadic simple groups. Then the algorithm for double coset enumeration together with the first isomorphic theorem aids us in proving the homomorphic image of the group we have constructed. After being presented with a group G, we then compute the composition series to solve extension problems. Given a composition such as G = G0 ≥ G1 ≥ ….. ≥ Gn-1 ≥ Gn = 1 and the corresponding factor groups G0/G1 = Q1,…,Gn-2/Gn-1 = Qn-1,Gn-1/Gn = Qn. We note that G1 = 1, implying Gn-1 = Qn. As we move through the next composition factor we see that Gn-2/Qn = Qn-1, so that Gn-2 is an extension of Qn-1 by Qn. Following this procedure we can recapture G from the products of Qi and thus solve the extension problem. The Jordan-Holder theorem then allows us to develop a process to analyze all finite groups if we knew all finite simple groups and could solve their extension problem, hence arriving at the isomorphism type of the group. We will present how we solve extensions problems while our main focus will lie on extensions that will include the following: semi-direct products, direct products, central extensions and mixed extensions.Lastly, we will discuss Iwasawa's Lemma and how double coset enumeration aids us in showing the simplicity of some of our groups.
APA, Harvard, Vancouver, ISO, and other styles
3

Hahn, Rebekah D. "K(1)-local Iwasawa theory /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ochi, Yoshihiro. "Iwasawa modules via homotopy theory." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, Shu-Leung. "Iwasawa invariants over quadratic fields /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844105976629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buyukboduk, Kazim. "Kolyvagin Systems over an Iwasawa algebra /." May be available electronically:, 2007. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Drinen, Michael Jeffrey. "Iwasawa mu-invariants of Selmer groups /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oh, Jangheon. "On Zeta Functions and Iwasawa Modules /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487930304689598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Venjakob, Otmar. "Iwasawa theory of p-adic Lie extensions." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9590147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Venjakob, Otmar. "Iwasawa theory of r-adic [rho-adic] Lie extensions." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961907630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nichifor, Alexandra. "Iwasawa theory for elliptic curves with cyclic isogenies /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lei, Antonio. "Iwasawa theory for modular forms at supersingular primes." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226747.

Full text
Abstract:
Let f=\sum a_nq n be a normalised eigen-newform of weight k\ge2 and p an odd prime which does not divide the level of f. We study a reformulation of Kato's main conjecture for f over the Zp-cyclotomic extension of Q. In particular, we generalise Kobayashi's main conjecture on p-supersingular elliptic curves over Q with a_p=0, which asserts that Pollack's p-adic L-functions generate the characteristic ideals of some \pm-Selmer groups which are cotorsion over the Iwasawa algebra \Lambda=Zp[[Zp]]. We begin by studying the p-adic Hodge theory for the p-adic representation associated to f in the case when a_p=0. It allows us to give analogous definitions of Kobayashi's \pm-Coleman maps and \pm-Selmer groups. The Coleman maps are used to show that the Pontryagin duals of these new Selmer groups are torsion over \Lambda as in the elliptic curve case. As a consequence, we formulate a main conjecture stating that Pollack's p-adic L-functions generate their characteristic ideals. Similar to Kobayashi's works, we prove one inclusion of the main conjecture using an Euler system constructed by Kato. We then prove the other inclusion of the main conjecture for CM modular forms, generalising works of Pollack and Rubin on CM elliptic curves. As a key step of the proof, we generalise the reciprocity law of Coates-Wiles and Rubin. Next, we study Wach modules associated to positive crystalline p-adic representations in general and generalise the construction of the Coleman maps. By applying this to modular forms with much more general a_p, we define two Coleman maps and decompose the classical p-adic L functions of f into linear combinations of two power series of bounded coefficients generalising works of Pollack (in the case a_p=0) and Sprung (when f corresponds to an elliptic curve over Q with a_p\ne0). Once again, this leads to a reformulation of Kato's main conjecture involving cotorsion Selmer groups and p-adic L-functions of bounded coefficients. One inclusion of this new main conjecture is proved in the same way as the a_p=0 case. Finally, we explain how the \pm-Coleman maps can be extended to Lubin-Tate extensions of height 1 in place of the Zp-cyclotomic extension. This generalises works of Iovita and Pollack for elliptic curves over Q.
APA, Harvard, Vancouver, ISO, and other styles
13

Witte, Malte. "Noncommutative Iwasawa Main Conjectures for Varieties over Finite Fields." Doctoral thesis, Universitätsbibliothek Leipzig, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:15-20090610-144827-5.

Full text
Abstract:
We state and prove an analogue for varieties over finite fields of T. Fukaya's and K. Kato's version of the noncommutative Iwasawa main conjecture. Moreover, we explain how this statement can be reinterpreted in terms of Waldhausen K-theory.
APA, Harvard, Vancouver, ISO, and other styles
14

Lafferty, Matthew John. "Eichler-Shimura Cohomology Groups and the Iwasawa Main Conjecture." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/556816.

Full text
Abstract:
Ohta has given a detailed study of the ordinary part of p-adic Eichler-Shimura cohomology groups (resp., generalized p-adic Eichler-Shimura cohomology groups) from the perspective of p-adic Hodge theory [O₁, O₂, O₃]. Assuming various hypotheses, he is able to use the structure of these groups to give a simple proof of the Iwasawa main conjecture over Q [O₂, O₃, O₄, O₅]. The goal of this thesis is to extend Ohta’s arguments with a view towards removing these hypotheses.
APA, Harvard, Vancouver, ISO, and other styles
15

Lafferty, Matthew J. "Eichler-Shimura cohomology groups and the Iwasawa main conjecture." Thesis, The University of Arizona, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3702136.

Full text
Abstract:

Ohta has given a detailed study of the ordinary part of p-adic Eichler-Shimura cohomology groups (resp., generalized p-adic Eichler-Shimura cohomology groups) from the perspective of p-adic Hodge theory. Assuming various hypotheses, he is able to use the structure of these groups to give a simple proof of the Iwasawa main conjecture over Q. The goal of this thesis is to extend Ohta’s arguments with a view towards removing these hypotheses.

APA, Harvard, Vancouver, ISO, and other styles
16

Solanki, Vishal. "Whitehead group of the Iwasawa algebra of GL2(Zp)." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/whitehead-group-of-the-iwasawa-algebra-of-gl2zp(d1cd25d8-c5dd-4365-8a4d-f384b4c08b11).html.

Full text
Abstract:
Main conjectures in Iwasawa theory are interesting because they give a deep connection between arithmetic and analytic objects in number theory. One of the most important recent developments in Iwasawa theory is the formulation of non-commutative main conjectures by Coates, Fukaya, Kato, Sujatha and Venjakob using K1 groups. Burns and Kato supplied a strategy to prove these non-commutative main conjectures. After important special cases were proved by Kato and Hara, the non-commutative main conjecture for totally real fields was proved by Kakde using this strategy (it was proved independently by Ritter-Weiss). In this thesis we imitate Kakde’s computation of K1 groups in order to obtain a description of the K1 group of the Iwasawa algebra of GL2(Zp). While we do not find an explicit description of this group, we do define another group which must contain this K1 group.
APA, Harvard, Vancouver, ISO, and other styles
17

Ardakov, Konstantin. "Krull dimension of Iwasawa algebras and some related topics." Thesis, University of Cambridge, 2004. https://www.repository.cam.ac.uk/handle/1810/251918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Schettler, Jordan Christian. "The Change in Lambda Invariants for Cyclic p-Extensions of Z(p)-Fields." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/217113.

Full text
Abstract:
The well-known Riemann-Hurwitz formula for Riemann surfaces (or the corresponding formulas of the same name for curves/function fields) is used in genus computations. In 1979, Yûji Kida proved a strikingly analogous formula in [Kid80] for p-extensions of CM-fields (p an odd prime) which is similarly used to compute Iwasawa λ -invariants. However, the relationship between Kida’s formula and the statement for surfaces is not entirely clear since the proofs are of a very different flavor. Also, there were a few hypotheses for Kida’s result which were not fully satisfying; for example, Kida’s formula requires CM-fields rather than more general number fields and excludes the prime p = 2. Around a year after Kida’s result was published, Kenkichi Iwasawa used Galois cohomology in [Iwa81] to establish a more general formula (about representations) that did not exclude the prime p = 2 nor need the CM-field assumption. Moreover, Kida’s formula follows as a corollary from Iwasawa’s formula. We’ll prove a slight generalization of Iwasawa’s formula and use this to give a new proof of a result of Kida in [Kid79] and Ferrero in [Fer80] which computes λ-invariants in imaginary quadratic extensions for the prime p = 2. We go on to produce special generalizations of Iwasawa’s formula in the case of cyclic p-extensions; these formulas can be realized as statements about Q(p)-representations, and, in the cases of degree p or p², about p-adic integral representations. One upshot of these formulas is a vanishing criterion for λ-invariants which generalizes a result of Takashi Fukuda et al. in [FKOT97]. Other applications include new congruences and inequalities for λ-invariants that cannot be gleaned from Iwasawa’s formula. Lastly, we give a scheme theoretic approach to produce a general formula for finite, separable morphisms of Dedekind schemes which simultaneously encompasses the classical Riemann-Hurwitz formula and Iwasawa’s formula.
APA, Harvard, Vancouver, ISO, and other styles
19

Minardi, John. "Iwasawa modules for [p-adic]-extensions of algebraic number fields /." Thesis, Connect to this title online; UW restricted, 1986. http://hdl.handle.net/1773/5742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Howson, S. "Iwasawa theory of elliptic curves for p-adic Lie extensions." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Thomas, Oliver [Verfasser], and Otmar [Akademischer Betreuer] Venjakob. "On Analytic and Iwasawa Cohomology / Oliver Thomas ; Betreuer: Otmar Venjakob." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/120108833X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McConnell, Gary. "On the Iwasawa theory of elliptic curves over cyclotomic fields." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sydenham, Andrew Leslie. "Iwasawa theory for the symmetric square of an elliptic curve." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sechi, Gianluigi. "GL₂ Iwasawa theory of elliptic curves over global funtion fields." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ray, Jishnu. "Iwasawa algebras for p-adic Lie groups and Galois groups." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS189/document.

Full text
Abstract:
Un outil clé dans la théorie des représentations p-adiques est l'algèbre d'Iwasawa, construit par Iwasawa pour étudier les nombres de classes d'une tour de corps de nombres. Pour un nombre premier p, l'algèbre d'Iwasawa d'un groupe de Lie p-adique G, est l'algèbre de groupe G complétée non-commutative. C'est aussi l'algèbre des mesures p-adiques sur G. Les objets provenant de groupes semi-simples, simplement connectés ont des présentations explicites comme la présentation par Serre des algèbres semi-simples et la présentation de groupe de Chevalley par Steinberg. Dans la partie I, nous donnons une description explicite des certaines algèbres d'Iwasawa. Nous trouvons une présentation explicite (par générateurs et relations) de l'algèbre d'Iwasawa pour le sous-groupe de congruence principal de tout groupe de Chevalley semi-simple, scindé et simplement connexe sur Z_p. Nous étendons également la méthode pour l'algèbre d'Iwasawa du sous-groupe pro-p Iwahori de GL (n, Z_p). Motivé par le changement de base entre les algèbres d'Iwasawa sur une extension de Q_p nous étudions les représentations p-adiques globalement analytiques au sens d'Emerton. Nous fournissons également des résultats concernant la représentation de série principale globalement analytique sous l'action du sous-groupe pro-p Iwahori de GL (n, Z_p) et déterminons la condition d'irréductibilité. Dans la partie II, nous faisons des expériences numériques en utilisant SAGE pour confirmer heuristiquement la conjecture de Greenberg sur la p-rationalité affirmant l'existence de corps de nombres "p-rationnels" ayant des groupes de Galois (Z/2Z)^t. Les corps p-rationnels sont des corps de nombres algébriques dont la cohomologie galoisienne est particulièrement simple. Ils sont utilisés pour construire des représentations galoisiennes ayant des images ouvertes. En généralisant le travail de Greenberg, nous construisons de nouvelles représentations galoisiennes du groupe de Galois absolu de Q ayant des images ouvertes dans des groupes réductifs sur Z_p (ex GL (n, Z_p), SL (n, Z_p ), SO (n, Z_p), Sp (2n, Z_p)). Nous prouvons des résultats qui montrent l'existence d'extensions de Lie p-adiques de Q où le groupe de Galois correspond à une certaine algèbre de Lie p-adique (par exemple sl(n), so(n), sp(2n)). Cela répond au problème classique de Galois inverse pour l'algèbre de Lie simple p-adique
A key tool in p-adic representation theory is the Iwasawa algebra, originally constructed by Iwasawa in 1960's to study the class groups of number fields. Since then, it appeared in varied settings such as Lazard's work on p-adic Lie groups and Fontaine's work on local Galois representations. For a prime p, the Iwasawa algebra of a p-adic Lie group G, is a non-commutative completed group algebra of G which is also the algebra of p-adic measures on G. It is a general principle that objects coming from semi-simple, simply connected (split) groups have explicit presentations like Serre's presentation of semi-simple algebras and Steinberg's presentation of Chevalley groups as noticed by Clozel. In Part I, we lay the foundation by giving an explicit description of certain Iwasawa algebras. We first find an explicit presentation (by generators and relations) of the Iwasawa algebra for the principal congruence subgroup of any semi-simple, simply connected Chevalley group over Z_p. Furthermore, we extend the method to give a set of generators and relations for the Iwasawa algebra of the pro-p Iwahori subgroup of GL(n,Z_p). The base change map between the Iwasawa algebras over an extension of Q_p motivates us to study the globally analytic p-adic representations following Emerton's work. We also provide results concerning the globally analytic induced principal series representation under the action of the pro-p Iwahori subgroup of GL(n,Z_p) and determine its condition of irreducibility. In Part II, we do numerical experiments using a computer algebra system SAGE which give heuristic support to Greenberg's p-rationality conjecture affirming the existence of "p-rational" number fields with Galois groups (Z/2Z)^t. The p-rational fields are algebraic number fields whose Galois cohomology is particularly simple and they offer ways of constructing Galois representations with big open images. We go beyond Greenberg's work and construct new Galois representations of the absolute Galois group of Q with big open images in reductive groups over Z_p (ex. GL(n, Z_p), SL(n, Z_p), SO(n, Z_p), Sp(2n, Z_p)). We are proving results which show the existence of p-adic Lie extensions of Q where the Galois group corresponds to a certain specific p-adic Lie algebra (ex. sl(n), so(n), sp(2n)). This relates our work with a more general and classical inverse Galois problem for p-adic Lie extensions
APA, Harvard, Vancouver, ISO, and other styles
26

Zábrádi, Gergely. "Characteristic elements, pairings, and functional equations in non-commutative Iwasawa theory." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Saikia, Anupam. "Iwasawa theory of Lubin-Tate division towers and ρ-Adic L-functions." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Zähringer, Yasin Hisam Julian. "Non-commutative Iwasawa theory with (φ,Γ)-local conditions over distribution algebras." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/noncommutative-iwasawa-theory-with-local-conditions-over-distribution-algebras(77477392-e3b4-4eb1-8acc-e59789517360).html.

Full text
Abstract:
In this thesis we formulate a natural non-commutative Iwasawa Main Conjecture for motives which fulfil the Dabrowski-Panchishkin condition on the level of (φ,Γ)-modules. The basic framework we employ is still Fukaya-Kato’s but we work systematically over Schneider-Teitelbaum’s distribution algebras of compact p-adic Lie groups instead of Iwasawa algebras. This allows us to consider as local conditions not just subrepresentations of the p-adic realisation which fulfil the Dabrowski-Panchishkin conditions but also sub-(φ,Γ)-modules which fulfil the analogous Dabrowski-Panchishkin conditions. We then combine this with Pottharst’s Selmer complexes and a generalisation of Nakamura’s Local Epsilon Conjecture for (φ,Γ)-modules to conjecturally define p-adic L-functions. We prove that the validity of our main conjecture for these p-adic L-functions follows from the validity of Fukaya-Kato’s Equivariant Tamagawa Number Conjecture and our generalisation of Nakamura’s Local Epsilon Conjecture. Moreover we are also able to compute the values of these p-adic L-functions at motivic points. Our formalism allows us, for example, to unify the GL2-main conjecture of elliptic curves which have either ordinary or supersingular reduction at p. In addition, we can use our formalism to give a new, and very natural, interpretation of Pollack’s ±-construction in the context of supersingular elliptic curves and we are hopeful that this new interpretation will in the future lead to the construction of natural non-commutative generalizations.
APA, Harvard, Vancouver, ISO, and other styles
29

Lee, Chern-Yang. "Non-commutative Iwasawa theory of elliptic curves at primes of multiplicative reduction." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226462.

Full text
Abstract:
Let E be an elliptic curve defined over the rationals Q, and p be a prime at least 5 where E has multiplicative reduction. This thesis studies the Iwasawa theory of E over certain false Tate curve extensions F[infinity], with Galois groupG = Gal(F[infinity]/Q). I show how the p[infinity]-Selmer group of E over F[infinity] controls the p[infinity]-Selmer rank growth within the false Tate curve extension, and how it is connected to the root numbers of E twisted by absolutely irreducible orthogonal Artin representations of G, and investigate the parity conjecture for twisted modules.
APA, Harvard, Vancouver, ISO, and other styles
30

Mailhot, James Michael. "Selmer groups for elliptic curves with isogenies of prime degree /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/5801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Barth, Peter [Verfasser], and Otmar [Akademischer Betreuer] Venjakob. "Iwasawa Theory for One-Parameter Families of Motives / Peter Barth ; Betreuer: Otmar Venjakob." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179230434/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Schmitt, Ulrich [Verfasser], and Otmar [Akademischer Betreuer] Venjakob. "Towards a Twist Conjecture in Non-Commutative Iwasawa Theory / Ulrich Schmitt ; Betreuer: Otmar Venjakob." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/1179925807/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kezuka, Yukako. "On the main conjectures of Iwasawa theory for certain elliptic curves with complex multiplication." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264939.

Full text
Abstract:
The conjecture of Birch and Swinnerton-Dyer is unquestionably one of the most important open problems in number theory today. Let $E$ be an elliptic curve defined over an imaginary quadratic field $K$ contained in $\mathbb{C}$, and suppose that $E$ has complex multiplication by the ring of integers of $K$. Let us assume the complex $L$-series $L(E/K,s)$ of $E$ over $K$ does not vanish at $s=1$. K. Rubin showed, using Iwasawa theory, that the $p$-part of Birch and Swinnerton-Dyer conjecture holds for $E$ for all prime numbers $p$ which do not divide the order of the group of roots of unity in $K$. In this thesis, we discuss extensions of this result. In Chapter $2$, we study infinite families of quadratic and cubic twists of the elliptic curve $A = X_0(27)$, so that they have complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3})$. For the family of quadratic twists, we establish a lower bound for the $2$-adic valuation of the algebraic part of the complex $L$-series at $s=1$, and, for the family of cubic twists, we establish a lower bound for the $3$-adic valuation of the algebraic part of the same $L$-value. We show that our lower bounds are precisely those predicted by Birch and Swinnerton-Dyer. In the remaining chapters, we let $K=\mathbb{Q}(\sqrt{-q})$, where $q$ is any prime number congruent to $7$ modulo $8$. Denote by $H$ the Hilbert class field of $K$. \mbox{B. Gross} proved the existence of an elliptic curve $A(q)$ defined over $H$ with complex multiplication by the ring of integers of $K$ and minimal discriminant $-q^3$. We consider twists $E$ of $A(q)$ by quadratic extensions of $K$. In the case $q=7$, we have $A(q)=X_0(49)$, and Gonzalez-Aviles and Rubin proved, again using Iwasawa theory, that if $L(E/\mathbb{Q},1)$ is nonzero then the full Birch--Swinnerton-Dyer conjecture holds for $E$. Suppose $p$ is a prime number which splits in $K$, say $p=\mathfrak{p}\mathfrak{p}^*$, and $E$ has good reduction at all primes of $H$ above $p$. Let $H_\infty=HK_\infty$, where $K_\infty$ is the unique $\mathbb{Z}_p$-extension of $K$ unramified outside $\mathfrak{p}$. We establish in this thesis the main conjecture for the extension $H_\infty/H$. Furthermore, we provide the necessary ingredients to state and prove the main conjecture for $E/H$ and $p$, and discuss its relation to the main conjecture for $H_\infty/H$ and the $p$-part of the Birch--Swinnerton-Dyer conjecture for $E/H$.
APA, Harvard, Vancouver, ISO, and other styles
34

Ponsinet, Gautier. "On the algebraic side of the Iwasawa theory of some non-ordinary Galois representations." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/32466.

Full text
Abstract:
Soit F un corps de nombres non-ramifié en un nombre premier impair p. Soit F∞) la Zp-extension cyclotomique de F et Λ = Zp [[Gal(F∞ /F)]] l’algèbre d’Iwasawa de Gal (F∞ /F) (signe de asymptotiquement égal) Zp sur Zp. Généralisant les groupes de Selmer plus et moins de Kobayashi, Büyükboduk et Lei ont défini des groupes de Selmer signés sur F∞ pour certaines représentations galoisiennes. En particulier, leurs constructions s’appliquent aux cas des variétés abéliennes définies sur F ayant bonne réduction supersingulière en chaque premier de F divisant p. Ces groupes de Selmer signés ont naturellement une structure de Λ -modules de type fini. Nous commençons par prouver une équation fonctionnelle pour ces groupes de Selmer signés qui relie les groupes de Selmer signés d’une telle représentation aux groupes de Selmer signés du dual de Tate de la représentation. Puis, nous étudions la structure de Λ -module des groupes de Selmer signés. Sous l’hypothèse qu’ils sont des Λ-modules de cotorsion, nous montrons qu’ils ne possèdent pas de sous- Λ -module propre d’indice fini. Nous déduisons de ce résultat quelques applications arithmétiques. Nous calculons le Λ-corang du groupe de Selmer de Bloch- Kato sur F∞ associé à la représentation, et, en étudiant la caractéristique d’Euler- Poincaré de ces groupes de Selmer signés, nous obtenons une formule explicite de la taille du groupe de Selmer de Bloch-Kato sur F. De plus, pour deux telles représentations isomorphes modulo p, nous comparons les invariants d’Iwasawa de leurs groupes de Selmer signés. Finalement, en supposant que les groupes de Selmer signés associés à une variété abélienne supersingulière sont des Λ -modules de cotorsion, nous montrons que le rang des groupes de Mordell-Weil de la varitété abélienne est borné le long de l’extension cyclotomique.
Let F be a number field unramified at an odd rational prime p. Let F∞ be the Zp-cyclotomic extension of F and Λ = Zp[[Gal(F∞/F)]] be the Iwasawa algebra of Gal (F∞/F) (signe de asymptotiquement égal) Zp over Zp. Generalizing Kobayashi’s plus and minus Selmer groups, Büyükboduk and Lei have defined signed Selmer groups over F∞ for some non-ordinary Galois representations. In particular, their construction applies to abelian varieties defined over F with good supersingular reduction at primes of F dividing p. These signed Selmer groups have a natural structure of finitely generated Λ-modules. We first prove a functional equation for these signed Selmer groups, relating the signed Selmer groups of such a representation to the signed Selmer groups of Tate dual of the representation. Second, we study the structure of Λ-module of the signed Selmer groups. Assuming that they are cotorsion Λ-modules, we show that they have no proper sub-Λ-module of finite index. We deduce from this a number of arithmetic applications. We compute the Λ-corank of the Bloch-Kato Selmer group attached to the representation over F∞, and, on studying the Euler-Poincaré characteristic of these signed Selmer groups, we obtain an explicit formula on the size of the Bloch-Kato Selmer group over F. Furthermore, for two such representations that are isomorphic modulo p, we compare the Iwasawa-invariants of their signed Selmer groups. Finally, under the hypothesis that the signed Selmer groups associated to a supersingular abelian variety are cotorsion Λ-modules, we show that the rank of Mordell-Weil groups of the abelian variety is bounded along the cyclotomic extension.
APA, Harvard, Vancouver, ISO, and other styles
35

Tsoi, Kwok-Wing. "On special elements for p-adic representations and higher rank Iwasawa theory at arbitrary weights." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/on-special-elements-for-padic-representations-and-higher-rank-iwasawa-theory-at-arbitrary-weights(95c87b01-0b66-4a9f-822b-ed6b7f381bb7).html.

Full text
Abstract:
In this thesis, we develop a theory of special elements in the higher exterior powers (or, more precisely, in the higher exterior power biduals) of the Galois cohomology of general p-adic representations over number fields. These elements constitute a natural extension of the concept of a ‘higher rank Euler system’ and we present evidence that they encode detailed information about the structure of Galois cohomology groups. In particular, we prove that a canonical ideal that one can define in terms of these elements is contained in both the relevant higher Fitting ideal and the annihilator ideal of the associated Galois cohomology group. In fact, under mild hypotheses, we find that the special elements completely determine the relevant higher Fitting ideal of the cohomology groups. Building upon this result, we are then able to determine the complete structure of the torsion part of the quotient of the higher exterior powers of the Galois cohomology group modulo the subgroup generated by the special elements. By means of a first concrete application, we specialise our theory to the p-adic represen-tations that arise from the Tate motives with cyclotomic twists. In this way, we both recover and refine the theory of generalised Stark elements recently developed by Burns, Kurihara and Sano. At the same time, we are able to answer a question explicitly raised by both Wash-ington and Lang regarding the Galois structure of global units modulo cyclotomic units in abelian fields, and also strongly refine a result of El Boukhari regarding the Galois structure of higher algebraic K-groups. In the same way, we can also formulate conjectures concerning p-adic L-series that have been formulated in other settings in earlier work of Castillo and Jones and of Solomon.
APA, Harvard, Vancouver, ISO, and other styles
36

Müller, Katharina [Verfasser]. "Classical Conjectures in Iwasawa Theory for the split prime Z_p-extension and the cyclotomic Z_p-extension / Katharina Müller." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/1232492833/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Villanueva, Gutiérrez José Ibrahim. "Sur quelques questions en théorie d'Iwasawa." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0637/document.

Full text
Abstract:
Ce travail de thèse comporte l'étude des invariants logarithmiques le long des $l^{d}$-extensions et se compose de trois parties étroitement reliées. La première partie est un compendium sur les divers approches à l'arithmétique algorithmique, c'est à dire l'étude générale des invariants logarithmiques. En particulier on y présente quatre définitions équivalentes du groupe de classes logarithmiques et on y démontre leur équivalence. On donne aussi une preuve alternative d'un théorème d'Iwasawa de type logarithmique. La deuxième partie s'interprète comme un addendum historique sur l'étude du groupe de classes logarithmiques le long des $l$-extensions. On démontre que sous la conjecture de Gross-Kuz'min la théorie d'Iwasawa peut être bien employée pour l'étude du cas non-cyclotomique. Ainsi, on démontre des relations entre les invariants $mu$ et $lambda$ correspondant au $ell$-groupe de classes avec les invariants $ilde{mu}$ et $ilde{lambda}$ attachés aux groupes de classes logarithmiques. La troisième partie comporte l'étude du module d'Iwasawa logarithmique pour des $l^{d}$-extensions, c'est à dire du groupe de Galois $X=Gal(L_{d}/K_{d})$ de la $ell$-extension maximale abélienne logarithmiquement non-ramifiée du compositum $K_{d}$ des différentes $l$-extensions d'un corps de nombres $K$. On démontre sous la conjecture de Gross-Kuz'min, de façon analogue au cas classique, que $X$ est bien un module noethérien et de torsion sous l'algèbre d'Iwasawa de $K_{d}$. Ainsi, on déduit des relations entre les invariants logarithmiques $ilde{mu}$ et $ilde{lambda}$ des $l$-extensions de $K$ qui satisfont une hypothèse de décomposition
This work is concerned with the study of logarithmic invariants on $l^{d}$-extensions and is subdivided in three pieces, which are closely related to each other. The first part is a compendium of the different approaches to logarithmic arithmetic, that is the study of the logarithmic invariants. In particular we show the equivalence between the four definitions of the logarithmic class group existing in the literature. Also we give an alternative proof of an Iwasawa logarithmic result. The second part can be thought as an historic addendum on the study of the logarithmic class group over $l$-extensions. Assuming the Gross-Kuz'min conjecture we show that the logarithmic class group can be studied in the Iwasawa setting for non-cyclotomic extensions. We also give relations between the classical $mu$ and $lambda$ invariants and the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ attached to the logarithmic class groups. The third part studies the properties of the Iwasawa logarithmic module for $l^{d}$-extensions, that is the Galois group $X=Gal(L_{d}/K_{d})$ of the maximal abelian $ell$-extension logarithmically unramified of the compositum $K_{d}$ of the different $l$-extensions of a number field $K$. Assuming the Gross-Kuz'min conjecture we show that $X$ is a noetherian torsion module over the Iwasawa algebra of $K_{d}$. We also deduce relations between the logarithmic invariants $ilde{mu}$ and $ilde{lambda}$ of the $l$-extensions of $K$ which satisfy a splitting condition
APA, Harvard, Vancouver, ISO, and other styles
38

Perbet, Guillaume. "Invariants d’Iwasawa dans les extensions de Lie p-adiques des corps de nombres." Thesis, Besançon, 2011. http://www.theses.fr/2011BESA2024/document.

Full text
Abstract:
Le but de cette thèse est l'étude des invariants d'Iwasawa attachés aux p-groupes des classes généralisés dans les extensions de Lie p-adiques de corps de nombres.Ces invariants ont été introduits par Iwasawa pour les Zp-extensions. Les travaux de Venjakob sur la structure des modules sur l'algèbre d'Iwasawa d'un groupe de Lie p-adique ont permis d'en généraliser la définition à la théorie non-commutative. Par des techniques de descente et une étude algébrique fine de la structure des modules d'Iwasawa sur un groupe non-commutatif, on dégage des formules asymptotiques pour les p-groupes des classes généralisés le long d'une extension de corps de nombres de groupe de Galois p-valué. Ces formules ont pour paramètres les invariants d'Iwasawa de l'extension. Elles sont rendues plus précises dans le cas des Zp-extensions, où on remarque qu'un défaut de descente doit être pris en compte et est d'impact non négligeable sur le résultat final. Ces résultats asymptotiques sont ensuite exploités à l'aide de la théorie du miroir. Ceci conduit à des formules de dualité entre ramification et décomposition concernant les invariants d'Iwasawa
This thesis aim at exploring Iwasawa invariants attached to generalized p-class groups in p-adic Lie extensions of number fields. These invariants where introduced by Iwasawa for Zp-extensions. In his work on the structure of modules over the Iwasawa algebra of a p-adic Lie group, Venjakob extends the definition to the non commutative theory. Using descent techniques, along with a fine algebraic study of Iwasawa's modules structure over a non commutative group, we obtain asymptotic formulas for generalized p-class groups in a tower of number fields, with a p-valued group as Galois group. These formulas have Iwasawa invariants as parameters. They become more precise for Zp-extensions, where a significant descent default is involved. These asymptotic results are exploited thanks to reflexion theory. This leads to duality formulas between ramification and decomposition for Iwasawa invariants
APA, Harvard, Vancouver, ISO, and other styles
39

Kleine, Sören [Verfasser], Preda [Akademischer Betreuer] Mihăilescu, Valentin [Akademischer Betreuer] Blomer, and Cornelius [Akademischer Betreuer] Greither. "A new approach to the investigation of Iwasawa invariants / Sören Kleine. Gutachter: Preda Mihailescu ; Valentin Blomer ; Cornelius Greither. Betreuer: Preda Mihailescu." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1064748767/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ohshita, Tatsuya. "On higher Fitting ideals of Iwasawa modules of ideal class groups over imaginary quadratic fields and Euler systems of elliptic units." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/175091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Crisan, Vlad-Cristian [Verfasser], Preda [Akademischer Betreuer] Mihailescu, Preda [Gutachter] Mihailescu, and Jörg [Gutachter] Brüdern. "The split prime μ-conjecture and further topics in Iwasawa theory / Vlad-Cristian Crisan ; Gutachter: Preda Mihailescu, Jörg Brüdern ; Betreuer: Preda Mihailescu." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1182033571/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Varescon, Firmin. "Calculs explicites en théorie d'Iwasawa." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2019/document.

Full text
Abstract:
Dans le premier chapitre de cette thèse on rappelle l'énoncé ainsi que des équivalents de la conjecture de Leopoldt puis l'on donne un algorithme permettant de vérifier cette conjecture pour un corps de nombre et premier donnés. Pour la suite on suppose cette conjecture vraie pour le premier p fixé Et on étudie la torsion du groupe de Galois de l'extension abélienne maximale p-ramifiée. On présente une méthode qui détermine effectivement les facteurs invariants de ce groupe fini. Dans le troisième chapitre on donne des résultats numériques que l'on interpréte via des heuristiques à la Cohen-Lenstra. Dans le quatrième chapitre, à l'aide de l'algorithme qui permet le calcul de ce module, on donne des exemples de corps et de premiers vérifiant la conjecture de Greenberg
In the first chapter of this thesis we explain Leopoldt's conjecture and some equivalent formulations. Then we give an algorithm that checks this conjecture for a given prime p and a number field. Next we assume that this conjecture is true, and we study the torsion part of the Galois group of the maximal abelian p-ramified p-extension of a given number field. We present a method to compute the invariant factors of this finite group. In the third chapter we give an interpretation of our numrical result by heuristics “à la” Cohen-Lenstra. In the fourth and last chapter, using our algorithm which computes this torsion submodule, we give new examples of numbers fields which satisfy Greenberg's conjecture
APA, Harvard, Vancouver, ISO, and other styles
43

Csige, Tamás. "K-theoretic methods in the representation theory of p-adic analytic groups." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17697.

Full text
Abstract:
Sei G eine p-adische analytische gruppe, welche die direkte Summe einer torsionfreien p-adische analytische gruppe H mit zerfallender halbeinfacher Liealgebra und einer n-dimensionalen abelschen p-adische analytische gruppe Z ist. In Kapitel 3 zeigen wir folgenden Satz: Sei M ein endlich erzeugter Torsionmodul über der Iwasawaalgebra von G, welcher keine nichtrivialen pseudo-null-Untermoduln besitzt. Dann ist q(M), das Bild von M in der Quotientenkategorie Q, genau dann volltreu, wenn M als Modul über der Iwasawaalgebra von Z torsionsfrei ist. Hierbei bezeichne Q den Serre-Quotienten der Kategorie der Moduln über der Iwasawaalgebra von G nach der Serre-Unterkategorie der pseudo-null-Moduln. In Kapitel 4 zeigen wir folgenden Satz: Es bezeichne T die Kategorie, deren Objekte die endlich erzeugten Modulen über der Iwasawaalgebra von G sind, welche auch als Moduln über der Iwasawaalgebra von H endlich erzeugt sind. Seien M, N zwei Objekte von T. Wir nehmen an, dass M, N keine nichttrivialen pseudo-null-Untermoduln besitzen und q(M) in Q volltreu ist. Dann gilt: Ist [M]=[N] in der Grothendieckgruppe von Q, so ist das Bild von N ebenfalls volltreu. In Kapitel 5 zeugen wir folgenden Satz: Sei G eine beliebige p-adische analytische Gruppe, welche keine Element der Ordung p besitzt. Dann sind die Grothendieckgruppen der Algebra stetiger Distributionen und der Algebra beschränkter Distributionen isomorph zu c Kopien des Rings der ganzen Zahlen, wobei c die Anzahl der p-regulären Konjugationsklassen des Quotienten von G nach einer offenen uniformen pro-p-Untergruppe H bezeichnet.
Let G be a compact p-adic analytic group with no element of order p such that it is the direct sum of a torsion free compact p-adic analytic group H whose Lie algebra is split semisimple and an abelian p-adic analytic group Z of dimension n. In chapter 3, we show that if M is a finitely generated torsion module over the Iwasawa algebra of G with no non-zero pseudo-null submodule, then the image q(M) of M via the quotient functor q is completely faithful if and only if M is torsion free over the Iwasawa algebra of Z. Here the quotient functor q is the unique functor from the category of modules over the Iwasawa algebra of G to the quotient category with respect to the Serre subcategory of pseudo-null modules. In chapter 4, we show the following: Let M, N be two finitely generated modules over the Iwasawa algebra of G such that they are objects of the category Q of those finitely generated modules over the Iwasaw algebra of G which are also finitely generated as modules over the Iwasawa algebra of H. Assume that q(M) is completely faithful and [M] =[N] in the Grothendieck group of Q. Then q(N) is also completely faithful. In chapter 6, we show that if G is any compact p-adic analytic group with no element of order p, then the Grothendieck groups of the algebras of continuous distributions and bounded distributions are isomorphic to c copies of the ring of integers where c denotes the number of p-regular conjugacy classes in the quotient group of G with an open normal uniform pro-p subgroup H of G.
APA, Harvard, Vancouver, ISO, and other styles
44

Saby, Nicolas. "Théorie d'Iwasawa géométrique : un théorème de comparaison." Grenoble 1, 1994. http://www.theses.fr/1994GRE10015.

Full text
Abstract:
En 1983, mazur et wiles dont demontre un theoreme de comparaison reliant la fonction l-p adique de kubota-leopoldt a la serie caracteristique associee a la tour des courbes d'igusa de niveau p#n (p premier impair). Je generalise ce resultat au cas de la tour des courbes d'igusa de niveau np#n, ou n est un entier plus grand que 5 premier a p, avec des hypotheses peu restrictives sur le caractere de la fonction l-p adique et par une methode nouvelle. Pour cela, on definit un ideal d'eisenstein dans l'algebre de hecke ordinaire de hida qui est relie a la fonction l-p adique. L'essentiel du travail est ensuite de bien comprendre les fonctorialites de picard et d'albanese sur les jacobiennes des courbes d'igusa ainsi que l'action du frobenius. Un resultat de tilouine sur la structure d'un sous-groupe p divisible de la jacobienne de la courbe modulaire permet finalement d'obtenir le resultat
APA, Harvard, Vancouver, ISO, and other styles
45

Caputo, Luca. "Sur la structure des noyaux sauvages étales des corps de nombres." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13780/document.

Full text
Abstract:
Le but de ce travail est de présenter des résultats à propos des noyaux sauvages étales. Soit $p$ un nombre premier. Les noyaux sauvages étales d'un corps de nombres $F$ (qui sont dénotés par $WK^{ét}_{2i}(F)$ avec $i\in \mathbb{Z}$) sont des généralisations cohomologiques de la $p$-partie du noyau sauvage classique $WK_{2}(F)$, qui est le sous-groupe de $K_2(F)$ constitué par les symboles qui sont triviaux pour tout symbole de Hilbert local. Ces noyaux sauvages étales sont des $\mathbb{Z}_p$-modules et l'on sait qu'ils sont finis lorsque $i\geq 1$ (et même, suivant les conventions, si $i=0$) : on conjecture en plus qu'ils soient toujours finis (conjecture de Schneider). Dans la suite, on va supposer que cette conjecture est satisfaite. On va s'intéresser en particulier à deux problèmes. Le premier, qui est étudié dans les Chapitres 2 et 3, est la déterminations des structures de groupe qui sont réalisables comme noyaux sauvages étales. En d'autres termes, si l'on se donne un corps de nombres $F$, un $p$-groupe abélien fini $X$ et un nombre entier $i\in\mathbb{Z}$, on peut se demander s'il existe une extension finie $E/F$ telle que $WK^{ét}_{2i}(E)\cong X$. Une question semblable a été étudiée pour les $p$-groupes des classes et il y a un relation précise entre les $p$-groupes des classes et les noyaux sauvages étales. Par conséquent, on peut espérer traduire les résultats classiques dans le contexte des noyaux sauvages étales. Peut-être est-il intéressant de donner ici une courte récapitulation sur le problème de réalisation classique pour les $p$-groupes des classes. Essentiellement, deux techniques sont utilisées. D'un coté, pour un corps de nombres $F$ fixé, l'on étudie la $p$-tour des corps des classes de Hilbert de $F$ : Yahagi a montré que cette tour est infinie si et seulement s'il n'y a pas d'extensions finies $E/F$ dont le $p$-groupe des classes soit trivial. De plus, si la tour est finie, alors toute structure de $p$-groupe abélien apparaît comme $p$-groupe des classes pour quelque extension finie $E/F$. De l'autre coté, une fois que l'on sait que pour un corps de nombres $F$ fixé, il existe une extension finie dont le $p$-groupe de classes est trivial, alors on peut se servir de la théorie du corps des classes et de la théorie des genres pour trouver, pour n'importe quel $p$-groupe abélien fini $X$, une extension finie $E/F$ telle que le $p$-groupe des classes de $E$ est isomorphe à $X$. En effet, la traduction du résultat de Yahagi dans le contexte des noyaux sauvages étales n'est pas tout à fait immédiate : la relation entre le groupe des classes et le noyau sauvage étale d'un corps de nombres $F$ s'écrit dans le langage de $\Gamma$-modules, où $\Gamma$ est le groupe de Galois sur $F$ de la $\mathbb{Z}_p$-extension cyclotomique de $F(\mu_p)$. La façon la plus naturelle pour s'approcher du problème est donc de considérer le problème de réalisabilité pour les modules d'Iwasawa. Ce problème a été étudié (parmi d'autres auteurs) par Ozaki : il a montré que pour tout $\Lambda$-module fini $X$, il existe un corps de nombres $k$ tel que le module d'Iwasawa de $k$ (c'est à dire la limite projective des $p$-groupes des classes le long de la tour cyclotomique) est isomorphe à $X$. Les techniques utilisées sont inspirées à celles de Yahagi et en fait elles s'appuient d'une façon fondamentale du fait que $p$ ne divise pas le nombre des classes de $\mathbb{Q}$. Pour obtenir la traduction de ce résultat en termes de noyaux sauvages étales il faut considérer plutôt $\mathbb{Q}(\mu_p)$ -plus précisément un sous-corps convenable de $\mathbb{Q}(\mu_p)$. Bien entendu, le nombre des classes de ce sous-corps n'est plus premier avec $p$ (du moment que $p$ peut être irrégulier). D'autre part, si $p$ est régulier, la preuve d'Ozaki peut être adaptée (comme l'on montre dans le Chapitre 2)
The aim of the present work is to prove some results about étale wild kernels. Let $p$ be an odd prime. Etale wild kernels of a number field $F$ (which are denoted $WK^{ét}_{2i}(F)$ for $i\in \mathbb{Z}$) are cohomological generalizations of the $p$-part of the classical wild kernel $WK_{2}(F)$, which is the subgroup of $K_2(F)$ made up by symbols which are trivial for any local Hilbert symbol. Etale wild kernels are $\mathbb{Z}_p$-modules which are known to be finite if $i\geq1$ (and even if $i=0$, depending on the chosen convention): actually they are conjectured to be always finite (the Schneider conjecture). In the following we will suppose that this is always the case. Two problems are studied in detail. The first, which is analyzed in Chapter 2 and Chapter 3, is to determine which group structures are realizable for étale wild kernels. In other words, given a number field $F$, a finite abelian $p$-group $X$ and $i\in \mathbb{Z}$, one can ask if there exists a finite extension $E/F$ such that $WK^{ét}_{2i}(E)\cong X$. A similar problem has been studied for $p$-class groups and there are precise relations between the $p$-class group and étale wild kernels. Therefore one may expect to translate results from $p$-class groups to étale wild kernels. It is maybe useful to give here a short account on the classical realizability problem for $p$-class groups. Essentially two kind of techniques are used. On the one hand, for a fixed number field $F$, one studies the Hilbert $p$-class field tower of $F$: it has been shown by Yahagi that the Hilbert $p$-class tower of $F$ is infinite if and only if there is no finite extension $E/F$ whose $p$-class group is trivial. Furthermore, if the Hilbert $p$-class tower of $F$ is finite, then every finite abelian $p$-group structure appears as $p$-class group of some finite extension $E/F$. On the other hand, once we know that for a fixed number field $F$ there exists a finite extension whose $p$-class group is trivial, then class field theory and genus theory are used to exhibit, for any finite abelian $p$-group $X$, a finite extension $E/F$ such that the $p$-class group of $E$ is isomorphic to $X$. Actually, the translation of Yahagi's result in terms of étale wild kernels is not immediate: the relation between the class groups and étale wild kernels of a number field $F$ is expressed in terms of $\Gamma$-modules structures, where $\Gamma$ is the Galois group over $F$ of the cyclotomic $\mathbb{Z}_p$-extension of $F(\mu_p)$. The most natural way to approach the problem is then to consider the realizability problem for Iwasawa modules. This problem is studied (among many others) by Ozaki: he proved that for any finite $\Lambda$-module $X$, there exists a number field $k$ such that the Iwasawa module of $k$ (i.e. the projective limit of $p$-class groups along the cyclotomic $\mathbb{Z}_p$-extension) is isomorphic to $X$. The techniques used are inspired to those by Yahagi and actually Ozaki makes fundamental use of the fact that $p$ does not divide the class number of $\mathbb{Q}$. To get the translation of this result in terms of étale wild kernels one has to consider $\mathbb{Q}(\mu_p)$ -more precisely a suitable subfield of $\mathbb{Q}(\mu_p)$ depending on $i$- instead of $\mathbb{Q}$. Here the problem is that the class number of this suitable subfield is no more coprime with $p$ (as $p$ may be irregular). If this is not the case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2
APA, Harvard, Vancouver, ISO, and other styles
46

Rougnant, Marine. "Sur quelques aspects des extensions à ramification restreinte." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD015/document.

Full text
Abstract:
Soit p un nombre premier, soit K/k une extension galoisienne finie de corps de nombres de degré premier à p et soit S un ensemble fini de premiers de k. Le groupe de Galois G(K,S) de la pro-p extension maximale de K non ramifiée en dehors de S est l'objet central de ce mémoire.On se place dans un premier temps dans le cas modéré : on suppose que S ne contient pas les places divisant p. Les travaux combinés de Labute, Minac et Schmidt sur les pro-p groupes mild ont permis d'exhiber les premiers exemples de groupes G(K,S) de dimension cohomologique 2. En implémentant un corollaire de leur critère dans le logiciel PARI/GP, on observe un phénomène de propagation : si k=Q et si le groupe G(Q,S) est mild, un fort pourcentage des groupes G(K,S) l'est également, pour K quadratique imaginaire. En associant au groupe G(K,S) deux graphes orientés dont les arcs sont définis par la ramification dans des extensions p-élémentaires, on démontre un critère théorique pour que ce phénomène de propagation ait lieu.On considère ensuite le cas sauvage : toutes les places au-dessus de p sont contenues dans S. Le groupe de Galois Δ:=Gal(K/k) agit sur G(K,S) ; on note G le plus grand quotient de G(K,S) sur lequel Δ agit trivialement et H le sous-groupe fermé de G(K,S) correspondant. Maire a étudié la liberté du Zp[[G]]-module H^{ab}. Nous poussons plus loin ses résultats en considérant les φ-composantes de H^{ab} sous l'action de Δ. Sous de bonnes hypothèses et sous la conjecture de Leopoldt, on démontre une condition nécessaire et suffisante pour que les φ-composantes soient libres ou non. La théorie du corps de classes permet de ramener cette condition à l'étude du régulateur normalisé, et donc à la p-rationalité du corps K. Les expérimentations faites sur PARI/GP dans des familles d'extensions cubiques cycliques, diédrales et cycliques de degré 4 du corps des rationnels corroborent une conjecture de Gras selon laquelle tout corps de nombres est p-rationnel pour p suffisant grand
Let p be a prime number, let K/k be a Galois extension of number fields and let S be a finite set of primes of K. We suppose that the degree of K/k is finite and coprime to p. We denote by G(K,S) the Galois group of the pro-p maximal extension of K unramified outside S. We focus on this thesis on two differents aspects of this pro-p group.We are first interested in the tame case : we suppose that S does not contain any place above p. The works of Labute, Minac and Schmidt about mild pro-p groups brought the first examples of groups G(K,S) of cohomological dimension two. Using a corollary of their criterium, we compute some examples with PARI/GP and we observe a propagation phenomenum : if we take K=Q and if we suppose that G(Q,S) is mild, a large part of the pro-p groups G(K,S) with K imaginary quadratic are mild too. We then associate two oriented graphs to G(K,S) and we show a theoretical criterium proving mildness of some imaginary quadratic fields.We then consider the wild case where all the places dividing p belong to S. The Galois group Δ:=Gal(K/k) acts on G(K,S). The action of Δ is trivial on some quotients of G(K,S) ; we denote by G the maximal one and by H the corresponding closed subgroup of G(K,S). Maire has studied the Zp[[G]]-freeness of the module H^{ab}. We extend his results considering the φ-component of H^{ab} under the action of Δ. In a favourable context and under Leopoldt's conjecture, we show a necessary and sufficient condition for the freeness of the φ-components. This condition is connected to p-rational fields by class field theory. We present experiments with PARI/GP in some families of cubic cyclic, dihedral and quartic cyclic extensions of Q which support the following conjecture from Gras : every number field is p-rational for sufficiently large p
APA, Harvard, Vancouver, ISO, and other styles
47

Mazigh, Youness. "Unités de Stark et théorie d'Iwasawa." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD005/document.

Full text
Abstract:
Dans cette thèse, on construit des systèmes d’Euler à partir des unités (conjecturales) de Stark et celles de Rubin-Stark d’un corps de nombres K, pour décrire l’idéal caractéristique du X-quotient du module d’Iwasawa standard X∞ pour certains caractères p-adiques irréductibles X. Ici X∞ est le groupe de Galois de la pro-p-extension abélienne non ramifiée maximale de K∞, où K∞ est une Zp-extension adéquate de K. Plus précisément, on démontre des résultats de divisibilité formulée par la conjecture principale de la théorie d’Iwasawa. Nos démonstrations reposent essentiellement sur la théorie des systèmes d’Euler
In this thesis, we construct Euler systems coming from the (conjectural) Stark units and those of Rubin-Stark of a number field K, to describe the characteristic ideal of the X-quotient of the standard Iwasawa module X∞, for some p-adic irreducible characters X. Here X∞ is the Galois group of the maximal unramified abelian pro-p-extension of K∞, where K∞ is an adequate Zp-extension of K. Precisely, we demonstrate a divisibility results formulated by the main conjecture of Iwasawa theory. Our demonstrations essentially are based on the theory of Euler systems
APA, Harvard, Vancouver, ISO, and other styles
48

Rodrigues, Jacinto Joaquín. "(ϕ,Γ)-modules de de Rham et fonctions L p-adiques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066512.

Full text
Abstract:
Nous étudions, dans cette thèse, la construction des fonctions L p-adiques des motifs sur Q et, plus particulièrement, des formes modulaires. Dans les premiers trois chapitres on étend des constructions de Perrin-Riou pour construire, pour une représentation p-adique de de Rham V du groupe de Galois absolu G_Qp de Qp (ou, plus généralement, un (ϕ,Γ)-module de de Rham sur l'anneau de Robba) et un système compatible d'éléments globaux, une fonction L p-adique. On montre, en utilisant des lois de réciprocité montrées par Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger et Nakamura, que ces fonctions interpolent des valeurs arithmétiques intéressantes aux caractères localement algébriques.Dans les derniers trois chapitres, on se spécialise au cas de dimension 2. On démontre, en s'inspirant des techniques de Nakamura et des nouvelles techniques de changement de poids de Colmez introduites pour l'étude des vecteurs localement algébriques dans la correspondance de Langlands L p-adique pour GL₂(Qp), une équation fonctionnelle pour notre fonction L p-adique. Comme une application de cette équation fonctionnelle, on fournit les argument manquants dans les travaux de Nakamura, complétant la preuve de la conjecture ε locale de Kato pour les représentations de dimension 2. Pour le motif associé à une forme modulaire, on utilise tous ces résultats pour interpréter les valeurs interpolées par la fonction L p-adique en termes des valeurs spéciales de la fonction L complexe de cette forme
This thesis studies the construction of p-adic L-functions associated to motives over Q and, in particular, to modular forms.In the first three chapters we generalize some constructions of Perrin-Riou in order to construct, for any p-adic de Rham representation V of the absolute Galois group G_Qp of Qp (or, more generally, any de Rham (ϕ,Γ)-module over the Robba ring) and any compatible system of global elements, a p-adic L-function. We show, by the use of some reciprocity laws proved by Perrin-Riou, Colmez, Cherbonnier-Colmez, Berger and Nakamura, that these functions interpolate interesting arithmetic values at locally algebraic characters.The last three chapters deal with the particular case of dimension 2. We show, inspired by some techniques of Nakamura and certain weight change techniques introduced by Colmez for the study of locally algebraic vectors in the p-adic Langlads correspondence for GL₂(Qp), that our p-adic L-function satisfies a functional equation. As an application of our functional equation, we fulfil the missing arguments in the work of Nakamura, providing a complete proof of Kato's local ε-conjecture for 2-dimensional representations. For the motive associated to a modular form, we use these results to interpret the interpolated values of the p-adic L-function in terms of special values of the complex L-function of the form
APA, Harvard, Vancouver, ISO, and other styles
49

Viguié, Stéphane. "Contribution à l’étude de la conjecture de Gras et de la conjecture principale d’Iwasawa, par les systèmes d’Euler." Thesis, Besançon, 2011. http://www.theses.fr/2011BESA2026/document.

Full text
Abstract:
Le but de ce travail est de montrer comment la théorie des systèmes d’Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d’idéaux. On ne s’intéresse ici qu’aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une version faible de la conjecture, nous reprenons la méthode des systèmes d’Euler afin d’étendre les résultats obtenus entre autres par Rubin, Xu et Zhao. Ensuite nous nous plaçons dans le cas où k est un corps quadratique imaginaire uniquement, et nous considérons une certaine Zp-extension k∞ de k, où p est un nombre premier différent de 2 et 3, décomposé dans k. Nous démontrons que pour toute extension finie K∞ de k∞ abélienne sur k, et tout Cp-caractère irréductible χ du sous-groupe de torsion de Gal(K∞/k), les idéaux caractéristiques des χ-quotients du module des p-classes et du module des unités modulo unités de Stark sont les mêmes. Il s'agit d'une des versions de la conjecture principale de la théorie d’Iwasawa, qui élargit un résultat de Rubin et Bley. C'est aussi une étape pour un travail ultérieur, où nous étendons un résultat de Rubin concernant la conjecture principale à deux variables
The goal of this work is to show how Euler systems allows us to compare, for some abelian extensions, the Galois module of global units modulo Stark units with the Galois module of ideal p-classes. We restricts ourselves to abelian extensions over a base field k which can be an imaginary quadratic field or a global field of positive characteristic. The Gras conjecture predicts that for all finite abelian extension K/k, all prime number p not dividing [K : k], and all irreducible and nontrivial Qp-character ψ of Gal (K/k), the ψ-part of the p-class group of K and the ψ-part of the group of global units modulo Stark units have the same cardinal. First we prove a weak form of the conjecture, and then we use Euler systems to extend the results obtained among others by Rubin, Xu et Zhao. Then we assume that k is an imaginary quadratic field, and we consider a special Zp-extension k∞ of k, where p is a prime number different from 2 and 3, decomposed in k. We prove that for all finite extension K∞ of k∞ abelian over k, and for all irreducible Cp-character χ of the torsion subgroup of Gal(K∞/k), the characteristic ideal of the χ-quotients of the module of p-classes and the characteristic ideal of the module of global units modulo Stark units are the same. It is one of the versions of the main conjecture in Iwasawa theory, which extends a result of Rubin and Bley. It is also a step for a further work, where we extend a result of Rubin on the two variables main conjecture
APA, Harvard, Vancouver, ISO, and other styles
50

Fourquaux, Lionel. "Logarithme de Perrin-Riou pour des extensions associées à un groupe de Lubin-Tate." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://tel.archives-ouvertes.fr/tel-00011919.

Full text
Abstract:
En 1994, Perrin-Riou a donné un procédé général de construction de fonctions L p-adiques des motifs à partir d'un système d'éléments « globaux ». Ce procédé fait intervenir une application « exponentielle de Perrin-Riou » qui interpole les exponentielles de Bloch-Kato associées à la représentation p-adique étudiée tordue par les puissances du caractère cyclotomique. Ces résultats ont ensuite été développés, avec en particulier la preuve par Colmez de la loi de réciprocité explicite conjecturée par Perrin-Riou. Plusieurs travaux récents suggèrent que ces résultats peuvent se généraliser en y remplaçant les extensions cyclotomiques par les extensions associées à un groupe de Lubin-Tate. Cette thèse donne une telle généralisation pour la construction de l'application « logarithme de Perrin-Riou » trouvée par Colmez.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography