Academic literature on the topic 'Jacobi polynomials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jacobi polynomials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jacobi polynomials"
Lukš, Antonín. "The quantized Jacobi polynomials." Applications of Mathematics 32, no. 6 (1987): 417–26. http://dx.doi.org/10.21136/am.1987.104273.
Full textStojanovic, Nikola, and Negovan Stamenkovic. "Lowpass filters approximation based on the Jacobi polynomials." Facta universitatis - series: Electronics and Energetics 30, no. 3 (2017): 351–62. http://dx.doi.org/10.2298/fuee1703351s.
Full textBhrawy, A. H., and A. S. Alofi. "An Accurate Spectral Galerkin Method for Solving Multiterm Fractional Differential Equations." Mathematical Problems in Engineering 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/728736.
Full textHe, M. X., and P. Natalini. "Relativistic jacobi polynomials." Integral Transforms and Special Functions 8, no. 1-2 (July 1999): 43–56. http://dx.doi.org/10.1080/10652469908819215.
Full textBonneux, Niels. "Exceptional Jacobi polynomials." Journal of Approximation Theory 239 (March 2019): 72–112. http://dx.doi.org/10.1016/j.jat.2018.11.002.
Full textAmir, Saba. "Extended Jacobi polynomials." International Journal of Contemporary Mathematical Sciences 9 (2014): 535–44. http://dx.doi.org/10.12988/ijcms.2014.4778.
Full textRababah, Abedallah. "Jacobi-Bernstein Basis Transformation." Computational Methods in Applied Mathematics 4, no. 2 (2004): 206–14. http://dx.doi.org/10.2478/cmam-2004-0012.
Full textGustavsson, Jan. "Some sums of Legendre and Jacobi polynomials." Mathematica Bohemica 126, no. 1 (2001): 141–49. http://dx.doi.org/10.21136/mb.2001.133910.
Full textZayed, Ahmed I. "Jacobi polynomials as generalized Faber polynomials." Transactions of the American Mathematical Society 321, no. 1 (January 1, 1990): 363–78. http://dx.doi.org/10.1090/s0002-9947-1990-0965745-1.
Full textIsmail, Mourad E. H. "Relativistic orthogonal polynomials are Jacobi polynomials." Journal of Physics A: Mathematical and General 29, no. 12 (June 21, 1996): 3199–202. http://dx.doi.org/10.1088/0305-4470/29/12/023.
Full textDissertations / Theses on the topic "Jacobi polynomials"
Jooste, Alta. "Zeros of Jacobi, Meixner and Krawtchouk Polynomials." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/30787.
Full textReiner-Roth, Griffin. "Rodrigues Formula for Jacobi Polynomials on the Unit Circle." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365772575.
Full textBarros, Michele Carvalho de. "Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/94284.
Full textBanca: Ana Paula Peron
Banca: Alagacone Sri Ranga
Resumo: Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas.
Abstract: Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials.
Mestre
Barros, Michele Carvalho de [UNESP]. "Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94284.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas.
Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials.
Balderrama, Cristina. "Orthogonal polynomials with hermitian matrix argument and associated semigroups." Angers, 2009. http://www.theses.fr/2009ANGE0035.
Full textIn this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one–dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d–dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d–dimensional Jacobi measure and obtain an analogous of Meyer's multiplier theorem in this setting. Sobolev Jacobi spaces are also studied
Gishe, Jemal Emina. "A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001620.
Full textBruder, Andrea S. Littlejohn Lance L. "Applied left-definite theory the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators /." Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5327.
Full textSubscript in abstract: n and n=0 in {Pn([alpha],[beta])(x)} [infinity] n=0, [mu] in (f,g)[mu], and R in [integral]Rfgd[mu]. Superscript in abstract: ([alpha],[beta]) and [infinity] in {Pn([alpha],[beta])(x)} [infinity] n=0. Includes bibliographical references (p. 115-119).
Webb, Marcus David. "Isospectral algorithms, Toeplitz matrices and orthogonal polynomials." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264149.
Full textYen, Chi Lun 1983. "O teorema de comparação de Sturm e aplicações." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-23T19:23:17Z (GMT). No. of bitstreams: 1 Yen_ChiLun_D.pdf: 3950162 bytes, checksum: 1812f3dd736abbe2d4ff070c7877fdff (MD5) Previous issue date: 2013
Resumo: O objetivo deste trabalho é apresentar uma nova formulação do Teorema de comparação de Sturm e suas aplicações na teoria dos zeros de polinômios ortogonais, que são: monotonicidade dos zeros dos polinômios ortogonais X1-Jacobi, desigualdades de Gautschi sobre os zeros dos polinômios ortogonais de Jacobi e o comportamento assintótico dos zeros dos polinômios ultrasféricos
Abstract: In this thesis we state a new formulation of the Sturm comparison Theorem and its applications to the zeros of orthogonal polynomials. Specifically, these applications deal with the monotonicity of zeros of X1-Jacobi orthogonal polynomials, Gautschi's conjectures about inequalities of zeros of Jacobi polynomials and the asymptotic of zeros of ultrasphricals polynomials
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Aksoy, Betul. "On The Wkb Asymptotic Solutionsof Differential Equations Of The Hypergeometric Type." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605581/index.pdf.
Full textBooks on the topic "Jacobi polynomials"
Askey, R. A. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Providence, R.I., U.S.A: American Mathematical Society, 1985.
Find full text1951-, Wilson James Arthur, ed. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Providence, R.I., U.S.A: American Mathematical Society, 1985.
Find full textKalnins, E. G. Orthogonal polynomials on N-spheres: Gegenbauer, Jacobi, and Heun. Hamilton, N.Z: University of Waikato, 1990.
Find full textTransplantation theorems and multiplier theorems for Jacobi series. Providence, R.I: American Mathematical Society, 1986.
Find full textMuckenhoupt, Benjamin. Transplantation theorems and multiplier theorems for Jacobi series. Providence, R.I., USA: American Mathematical Society, 1986.
Find full textForrester, Peter. Log-gases and random matrices. Princeton: Princeton University Press, 2010.
Find full textChanillo, Sagun. Weak type estimates for Cesaro sums of Jacobi polynomial series. Providence, R.I: American Mathematical Society, 1993.
Find full textvan den Essen, Arno, Shigeru Kuroda, and Anthony J. Crachiola. Polynomial Automorphisms and the Jacobian Conjecture. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60535-3.
Full textYau, Stephen S. T. Classification of Jacobian ideals in variant by sl (2, c) actions. Providence, R.I., USA: American Mathematical Society, 1988.
Find full textBook chapters on the topic "Jacobi polynomials"
Schmüdgen, Konrad. "Orthogonal Polynomials and Jacobi Operators." In Graduate Texts in Mathematics, 93–119. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64546-9_5.
Full textMeijer, H. G. "Asymptotic expansion of Jacobi polynomials." In Lecture Notes in Mathematics, 380–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0076567.
Full textConnett, W. C., C. Markett, and A. L. Schwartz. "Jacobi Polynomials and Related Hypergroup Structures." In Probability Measures on Groups X, 45–81. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2364-6_5.
Full textMarčoková, Mariana, and Vladimír Guldan. "Jacobi Polynomials and Some Related Functions." In Mathematical Methods in Engineering, 219–27. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7183-3_20.
Full textRasch, J. "On the Addition Theorem for Jacobi Polynomials." In Coincidence Studies of Electron and Photon Impact Ionization, 195–97. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9751-0_23.
Full textNevai, P. "Orthogonal Polynomials, Recurrences, Jacobi Matrices, and Measures." In Progress in Approximation Theory, 79–104. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2966-7_4.
Full textYui, Noriko. "Jacobi quartics, legendre polynomials and formal groups." In Lecture Notes in Mathematics, 182–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078046.
Full textvon Estorff, Otto, Steffen Petersen, and Daniel Dreyer. "Efficient Infinite Elements based on Jacobi Polynomials." In Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods, 231–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77448-8_9.
Full textDeschout, Klaas, and Arno B. J. Kuijlaars. "Double Scaling Limit for Modified Jacobi-Angelesco Polynomials." In Notions of Positivity and the Geometry of Polynomials, 115–61. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0142-3_8.
Full textCvetković, Aleksandar S. "Interlacing Property of Zeros of Shifted Jacobi Polynomials." In Approximation and Computation, 97–101. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6594-3_7.
Full textConference papers on the topic "Jacobi polynomials"
Moody, Dustin. "Division polynomials for Jacobi quartic curves." In the 36th international symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1993886.1993927.
Full textXU, YUAN. "A PRODUCT FORMULA FOR JACOBI POLYNOMIALS." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792303_0031.
Full textTchiotsop, Daniel, Didier Wolf, Valerie Louis-Dorr, and Rene Husson. "ECG Data Compression Using Jacobi Polynomials." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4352678.
Full textDEMNI, N. "FREE MARTINGALE POLYNOMIALS FOR STATIONARY JACOBI PROCESSES." In Proceedings of the 28th Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835277_0008.
Full textDas, Sourav, and A. Swaminathan. "Higher order derivatives of R-Jacobi polynomials." In INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: Proceedings of the 2nd International Conference on Mathematical Sciences and Statistics (ICMSS2016). Author(s), 2016. http://dx.doi.org/10.1063/1.4952538.
Full textAlMheidat, Maalee, and Mohammad AlQudah. "Characterization of generalized Jacobi Koornwinder’s type polynomials." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992216.
Full textAlanbay, Berkan, Karanpreet Singh, and Rakesh K. Kapania. "Vibration of Curvilinearly Stiffened Plates Using Ritz Method With Orthogonal Jacobi Polynomials." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86871.
Full textLiu, Da-Yan, Olivier Gibaru, Wilfrid Perruquetti, and Taous-Meriem Laleg-Kirati. "Fractional order differentiation by integration with Jacobi polynomials." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426436.
Full textMARTíNEZ-FINKELSHTEIN, A., P. MARTíNEZ-GONZÁLEZ, and R. ORIVE. "ZEROS OF JACOBI POLYNOMIALS WITH VARYING NON-CLASSICAL PARAMETERS." In Proceedings of the International Workshop. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792303_0008.
Full textKhorramian, Ali N., and S. Atashbar Tehrani. "The Jacobi polynomials QCD analysis for proton spin structure." In Proceedings of the 17th International Spin Physics Symposium. AIP, 2007. http://dx.doi.org/10.1063/1.2750811.
Full text