Dissertations / Theses on the topic 'Jacobi polynomials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 31 dissertations / theses for your research on the topic 'Jacobi polynomials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Jooste, Alta. "Zeros of Jacobi, Meixner and Krawtchouk Polynomials." Thesis, University of Pretoria, 2012. http://hdl.handle.net/2263/30787.
Full textReiner-Roth, Griffin. "Rodrigues Formula for Jacobi Polynomials on the Unit Circle." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1365772575.
Full textBarros, Michele Carvalho de. "Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/94284.
Full textBanca: Ana Paula Peron
Banca: Alagacone Sri Ranga
Resumo: Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas.
Abstract: Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials.
Mestre
Barros, Michele Carvalho de [UNESP]. "Comportamento assintótico dos polinômios ortogonais de Sobolev-Jacobi e Sobolev-Laguerre." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/94284.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Sejam Sn(x); n ¸ 0; os polinômios de Sobolev, ortogonais com relação ao produto interno hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; onde fdÃ0; dÃ1g forma um par coerente de medidas relacionadas às medidas de Jacobi ou de Laguerre. Denotemos por PÃ0 n (x) e PÃ1 n (x); n ¸ 0; os polinômios ortogonais com respeito a dÃ0 e dÃ1; respectivamente. Neste trabalho, estudamos o comportamento assintótico, quando n ! 1; das razões entre os polinômios de Sobolev, Sn(x); e os polinômios ortogonais PÃ0 n (x) e PÃ1 n (x); além do comportamento limite da razão entre esses dois últimos polinômios. Propriedades assintóticas para os coeficientes da relação de recorrência satisfeita pelos polinômios de Sobolev também foram estudadas.
Let Sn(x); n ¸ 0; be the Sobolev polynomials, orthogonal with respect to the inner product hf; giS = ZR f(x)g(x)dÃ0(x) + ¸ ZR f0(x)g0(x)dÃ1(x); ¸ > 0; where fdÃ0; dÃ1g forms a coherent pair of measures related to the Jacobi measure or Laguerre measure. Let PÃ0 n (x) and PÃ1 n (x); n ¸ 0; denote the orthogonal polynomials with respect to dÃ0 and dÃ1; respectively. In this work we study the asymptotic behaviour, as n ! 1; of the ratio between the Sobolev polynomials, Sn(x); and the ortogonal polynomials PÃ0 n (x) and PÃ1 n (x); as well as the limit behaviour of the ratio between the last two polynomials. Furthermore, we also give asymptotic results for the coefficients of the recurrence relation satisfied by the Sobolev polynomials.
Balderrama, Cristina. "Orthogonal polynomials with hermitian matrix argument and associated semigroups." Angers, 2009. http://www.theses.fr/2009ANGE0035.
Full textIn this work we construct and study families of generalized orthogonal polynomials with hermitian matrix argument associated to a family of orthogonal polynomials on R. Different normalizations for these polynomials are considered and we obtain some classical formulas for orthogonal polynomials from the corresponding formulas for the one–dimensional polynomials. We also construct semigroups of operators associated to the generalized orthogonal polynomials and we give an expression of the infinitesimal generator of this semigroup and, in the classical cases, we prove that this semigroup is also Markov. For d–dimensional Jacobi expansions we study the notions of fractional integral (Riesz potentials), Bessel potentials and fractional derivatives. We present a novel decomposition of the L2 space associated with the d–dimensional Jacobi measure and obtain an analogous of Meyer's multiplier theorem in this setting. Sobolev Jacobi spaces are also studied
Gishe, Jemal Emina. "A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001620.
Full textBruder, Andrea S. Littlejohn Lance L. "Applied left-definite theory the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators /." Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5327.
Full textSubscript in abstract: n and n=0 in {Pn([alpha],[beta])(x)} [infinity] n=0, [mu] in (f,g)[mu], and R in [integral]Rfgd[mu]. Superscript in abstract: ([alpha],[beta]) and [infinity] in {Pn([alpha],[beta])(x)} [infinity] n=0. Includes bibliographical references (p. 115-119).
Webb, Marcus David. "Isospectral algorithms, Toeplitz matrices and orthogonal polynomials." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/264149.
Full textYen, Chi Lun 1983. "O teorema de comparação de Sturm e aplicações." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-23T19:23:17Z (GMT). No. of bitstreams: 1 Yen_ChiLun_D.pdf: 3950162 bytes, checksum: 1812f3dd736abbe2d4ff070c7877fdff (MD5) Previous issue date: 2013
Resumo: O objetivo deste trabalho é apresentar uma nova formulação do Teorema de comparação de Sturm e suas aplicações na teoria dos zeros de polinômios ortogonais, que são: monotonicidade dos zeros dos polinômios ortogonais X1-Jacobi, desigualdades de Gautschi sobre os zeros dos polinômios ortogonais de Jacobi e o comportamento assintótico dos zeros dos polinômios ultrasféricos
Abstract: In this thesis we state a new formulation of the Sturm comparison Theorem and its applications to the zeros of orthogonal polynomials. Specifically, these applications deal with the monotonicity of zeros of X1-Jacobi orthogonal polynomials, Gautschi's conjectures about inequalities of zeros of Jacobi polynomials and the asymptotic of zeros of ultrasphricals polynomials
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Aksoy, Betul. "On The Wkb Asymptotic Solutionsof Differential Equations Of The Hypergeometric Type." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605581/index.pdf.
Full textPeron, Ana Paula. "Funções positivas definidas para interpolação em esferas complexas." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/.
Full textWe characterize positive definite functions on complex spheres, generalizing a famous result due to I. J. Schoenberg ([41]). As in the real case, we study the so-called strictly positive definite functions. They can be used to perform interpolation of scattered data on those spheres. We present (separated) necessary and sufficient conditions for a positive definite function to be strictly positive definite of a certain order. These conditions produce a final characterization for those positive definite functions which are strictly positive definite of all orders, on almost all spheres. Strictly positive definite functions of order 2 are identified. Finally, we study a connection between strictly positive definite functions on real spheres and strictly positive definite functions on complex spheres.
Fukushima, Paula Akari. "Sobre Polinômios Ortogonais Excepcionais." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154231.
Full textRejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: Problema 01) Observamos que no seu arquivo consta o auxílio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), então na Folha de rosto e de aprovação deve constar a financiadora. Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente. Agradecemos a compreensão on 2018-06-08T19:11:31Z (GMT)
Submitted by Paula Akari Fukushima (paula.fukushima@gmail.com) on 2018-06-12T13:25:21Z No. of bitstreams: 1 dissertacao_com_ficha_catalografica.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-06-12T19:15:16Z (GMT) No. of bitstreams: 1 fukushima_pa_me_sjrp.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5)
Made available in DSpace on 2018-06-12T19:15:16Z (GMT). No. of bitstreams: 1 fukushima_pa_me_sjrp.pdf: 734279 bytes, checksum: 7a81403314e3b2da3076407e9672a090 (MD5) Previous issue date: 2018-05-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Nesta dissertação estudamos sequências de polinômios ortogonais que surgem como auto-funções polinomiais do problema de Sturm-Liouville, sob a condição de que, nem todos os graus das auto-funções polinomiais estejam presentes na sequência de graus dos polinômios que formam o conjunto ortogonal completo. Estas sequências são chamadas de sequências de polinômios ortogonais excepcionais. Emparticular,realizamosumestudodospolinômiosortogonaisexcepcionais X1-Jacobi e X1-Laguerre.
In this dissertation we study sequences of orthogonal polynomials that arise as polynomial eigenfunctions of the Sturm-Liouville problem, with the condition that not all degrees of polynomial eigenfunctions are present in the sequence of degrees of the polynomials that form a complete orthogonal set. These sequences are called exceptional orthogonal polynomial sequences. In particular, we study the exceptional orthogonal polynomials X1-Jacobi and X1-Laguerre.
Alanbay, Berkan. "Free Vibrations and Static Deformations of Composite Laminates and Sandwich Plates using Ritz Method." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/103087.
Full textDoctor of Philosophy
In everyday life, plate-like structures find applications such as boards displaying advertisements, signs on shops and panels on automobiles. These structures are typically nailed, welded, or glued to supports at one or more edges. When subjected to disturbances such as wind gusts, plate-like structures vibrate. The frequency (number of cycles per second) of a structure in the absence of an applied external load is called its natural frequency that depends upon plate's geometric dimensions, its material and how it is supported at the edges. If the frequency of an applied disturbance matches one of the natural frequencies of the plate, then it will vibrate violently. To avoid such situations in structural designs, it is important to know the natural frequencies of a plate under different support conditions. One would also expect the plate to be able to support the designed structural load without breaking; hence knowledge of plate's deformations and stresses developed in it is equally important. These require mathematical models that adequately characterize their static and dynamic behavior. Most mathematical models are based on plate theories. Although plates are three-dimensional (3D) objects, their thickness is small as compared to the in-plane dimensions. Thus, they are analyzed as 2D objects using assumptions on the displacement fields and using quantities averaged over the plate thickness. These provide many plate theories, each with its own computational efficiency and fidelity (the degree to which it reproduces behavior of the 3-D object). Hence, a plate theory can be developed to provide accurately a quantity of interest. Some issues are more challenging for low-fidelity plate theories than others. For example, the greater the plate thickness, the higher the fidelity of plate theories required for obtaining accurate natural frequencies and deformations. Another challenging issue arises when a sandwich structure consists of strong face-sheets (e.g., made of carbon fiber-reinforced epoxy composite) and a soft core (e.g., made of foam) embedded between them. Sandwich structures exhibit more complex behavior than monolithic plates. Thus, many widely used plate theories may not provide accurate results for them. Here, we have used different plate theories to solve problems including those for sandwich structures. The governing equations of the plate theories are solved numerically (i.e., they are approximately satisfied) using the Ritz method named after Walter Ritz and weighted Jacobi polynomials. It is shown that these provide accurate solutions and the corresponding numerical algorithms are computationally more economical than the commonly used finite element method. To evaluate the accuracy of a plate theory, we have analytically solved (i.e., the governing equations are satisfied at every point in the problem domain) equations of the 3D theory of linear elasticity. The results presented in this research should help structural designers.
Barbosa, Victor Simões. "Núcleos positivos definidos em espaços 2-homogêneos." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02122016-102032/.
Full textIn this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.
Macedo, Osmar Jesus. "Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/.
Full textThis work's statistical objective is to assess the performance of random coef- ficient regression models when Legendre, modified Jacobi and trigonometric functions are used as the covariate basis. This was studied with an application to a genetic analysis of the body weight of cattle from the Nellore breed. In the period 1981 to 2002 body weight data of animals were collected from the birth to the 800th day of life. An initial two random factor model used random coefficients for the direct genetic and environment animal effects. A second three random factors model introduced an additional random term for coefficients maternal genetic effects. Our final model, with four random factors, included environment maternal effects. Average growth curve was modeled by a fixed linear regression on days of age nested within contemporary group and ages of dams at calving. The data come from the Mundo Novo farm, and were provided by the Animal Breeding Genetic Group of the FZEA/USP. There were 61,975 body weights measured on 20,543 animals. In addition, information from 26,275 pedigree Nellore animals was included. No animal was weighed more than six times, and each animal supplied at most one measure within each of the following age intervals (in days): 1-69, 0-159, 160-284, 285-454, 455-589 and 590-800. This study aimed to compare the animal's mean growth curve using mixed models with the orthonormal function bases, in the case of two, three and four random factors. A second aim was to investigate the estimated random components curve behaviour using the selected models with each base of functions in the three distinct random effect groups and to examine the behaviour of the heritability coefficient curves obtained through the random component curves. The analysis was done using the PX-AI and the WOMBAT device. For parsimony, the Schwartz Bayesian information criterion (BIC) was adopted to select the best models. This criterion suggested two random factors, the for Legendre model, six covariates (ML26), for the Modified Jacobi model, five covariates (MJ25) and for the trigonometric model, six covariates (MT26). With three random factors, the models all required six covariates (MJ36, ML36, MT36). Finally, with four random factors, the Modified Jacobi model required five covariates (MJ45), the Legendre model required five covariates (ML45), and the trigonometric model required six covariates (MT46). Within the nine selected models, the MJ36 model was the one with the smaller BIC, however the MJ45 model presented variance components estimates very similar to the MJ36 model. The variance components and heritability coefficient estimates from the models with modified Jacobi functions were bellow the ones obtained with Legendre functions even at the extreme end of the intervals. In the interior of the interval, however, they were in agreement, staying between 0.2 and 0.3. The estimates obtained with trigonometric functions differed from the others and were much lower at the interval extremes for models with more than two random factors.
Hall, Jack Kingsbury Mathematics & Statistics Faculty of Science UNSW. "Some branching rules for GL(N,C)." Awarded by:University of New South Wales. Mathematics and Statistics, 2007. http://handle.unsw.edu.au/1959.4/29473.
Full textBonfim, Rafaela Neves. "Núcleos isotrópicos e positivos definidos sobre espaços 2-homogêneos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22092017-105842/.
Full textIn this work we present a characterization for the continuous, isotropic and positive definite matrix-valued kernels on a compact two-point homogeneous space. After that, we consider the strict positive definiteness of the kernels, describing some independent sufficient conditions for that property to hold. In the case the space is not a sphere, one of the conditions becomes necessary and sufficient for the strict positive definiteness of the kernel. Further, for 22- matrix-valued kernels on a compact two-point homogeneous space which is not a sphere, we present a characterization for the strict positive definiteness of the kernels based upon the main diagonal elements in its matrix representation. In the last part of this work, we restrict ourselves to scalar kernels and determine necessary and sufficient conditions in order that the product of two continuous, isotropic and positive definite kernels on a compact two-point homogeneous space be strictly positive definite. We also discuss the extension of this result for kernels defined on a product of a locally compact group and a high dimensional sphere.
Vazquez, Thais Godoy. "Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-10T12:57:32Z (GMT). No. of bitstreams: 1 Vazquez_ThaisGodoy_D.pdf: 11719751 bytes, checksum: c6d385d6a6414705c9f468358b8d3bea (MD5) Previous issue date: 2008
Resumo: Este trabalho tem por objetivo principal o desenvolvimento de funções de interpolaçao e regras de integraçao tensorizaveis para o Metodo dos Elementos Finitos (MEF) de alta ordem hp, considerando os sistemas de referencias locais dos elementos. Para isso, primeiramente, determinam-se ponderaçoes especficas para as bases de funçoes de triangulos e tetraedros, formada pelo produto tensorial de polinomios de Jacobi, de forma a se obter melhor esparsidade e condicionamento das matrizes de massa e rigidez dos elementos. Alem disso, procuram-se novas funçoes de base para tornar as matrizes de massa e rigidez mais esparsas possiveis. Em seguida, escolhe-se os pontos de integraçao que otimizam o custo do calculo dos coeficientes das matrizes de massa e rigidez usando as regras de quadratura de Gauss-Jacobi, Gauss-Radau-Jacobi e Gauss-Lobatto-Jacobi. Por fim, mostra-se a construçao de uma base unidimensional nodal que permite obter uma matriz de rigidez praticamente diagonal para problemas de Poisson unidimensionais. Discute-se ainda extensoes para elementos bi e tridimensionais
Abstract: The main purpose of this work is the development of tensor-based interpolation functions and integration rules for the hp High-order Finite Element Method (FEM), considering the local reference systems of the elements. We first determine specific weights for the shape functions of triangles and tetrahedra, constructed by the tensorial product of Jacobi polynomials, aiming to obtain better sparsity and numerical conditioning for the mass and stiffness matrices of the elements. Moreover, new shape functions are proposed to obtain more sparse mass and stiffness matrices. After that, integration points are chosen that optimize the cost for the calculation of the coefficients of the mass and stiffness matrices using the rules of quadrature of Gauss-Jacobi, Gauss-Radau-Jacobi and Gauss-Lobatto-Jacobi. Finally, we construct an one-dimensional nodal shape function that obtains an almost diagonal stiffness matrix for the 1D Poisson problem. Extensions to two and three-dimensional elements are discussed.
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Nguyen, thi bich Thuy. "Etude de certains ensembles singuliers associés à une application polynomiale." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4054.
Full textThere are two parts in the present work. The first part concerns the asymptotic set of a polynomial mapping $F: C^n to C^n$. In the 90s, Zbigniew Jelonek showed that this set is a $(n-1)$ - (complex) dimensional singular variety. We give a method, called {it m'ethode des fa{c c}ons}, for stratifying this set. We obtain a Thom-Mather stratification. Moreover, there exists a Whitney stratification such that the set of possible fa{c c}ons is constant on every stratum. By using the fa{c c}ons, we give an algorithm for expliciting the asymptotic sets of a dominant quadratic polynomial mapping in three variables. As a result, we have a complete list of the asymptotic sets in this case. The second part concerns the set called Valette set $V_F$. In 2010, Anna and Guillaume Valette constructed a real pseudomanifold $V_F subset R^{2n + p}$, where $p > 0$, associated to a polynomial mapping $F: C^n to C^n$. In the case $n = 2$, they proved that if $F$ is a polynomial mapping with nowhere vanishing Jacobian, then $F$ is not proper if and only if the homology (or intersection homology) of $V_F$ is not trivial in dimension 2. We give a generalization of this result, in the case of a polynomial mapping $F : C^n to C^n$ with nowhere vanishing Jacobian. We give also a method for stratifying the set $V_F$. As applications, we have the stratifications of the set of asymptotic critical values of $F$ and the set of bifurcation points of $F$
Abbas, Lamia. "Inégalités de Landau-Kolmogorov dans des espaces de Sobolev." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00776349.
Full textValqui, Haase Christian Holger, Jorge A. Guccione, and Juan J. Guccione. "A differential equation for polynomials related to the Jacobian conjecture." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95963.
Full textAnalizamos un posible contraejemplo P;Q a la conjetura del jacobiano con gcd(deg(P); deg(Q)) = 16 y mostramos que su existencia depende exclusivamente de la existencia de soluciones de una cierta ecuacion diferencial de Abel de segundo tipo.
Ali, A. Hamid A. Hussain. "Some aspects of the Jacobian conjecture : the geometry of automorphisms of C2." Thesis, University of St Andrews, 1987. http://hdl.handle.net/10023/13878.
Full textValqui, Haase Christian Holger, and Marco Solórzano. "The Groebner basis of a polynomial system related to the Jacobian conjecture." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95235.
Full textEn este artículo calculamos la base de Groebner de un sistema polinomial de ecuaciones relacionada con la conjetura del jacobiano utilizando una fórmula recursiva para los numeros de Catalan.
Sadik, Mohamed. "Inégalités de Markov-Bernstein en L2 : les outils mathématiques d'encadrement de la constante de Markov-Bernstein." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557914.
Full textPasca, Bogdan Mihai. "Calcul flottant haute performance sur circuits reconfigurables." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00654121.
Full textMarchi, Tommaso. "Position and singularity analysis of a class of n-RRR planar parallel robots." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textWang, Qingqing. "Uniform asymptotic expansions of the Jacobi functions and the Jacobi polynomials." 1991. http://hdl.handle.net/1993/17401.
Full textMancha, Nina. "Zeros of Jacobi polynomials and associated inequalities." Thesis, 2015. http://hdl.handle.net/10539/18531.
Full textThis Dissertation focuses on the Jacobi polynomial. Specifically, it discusses certain aspects of the zeros of the Jacobi polynomial such as the interlacing property and quasiorthogonality. Also found in the Dissertation is a chapter on the inequalities of the zeros of the Jacobi polynomial, mainly those developed by Walter Gautschi.
Lai, Sheng-Hong, and 賴聲泓. "Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/39081535759260242621.
Full text國立中央大學
數學研究所
98
The acoustic problems usually happens around us in our daily life when we drive a car, take a bus or take a plane. From the problems of acoustic vibrations with damping, a polynomial eigenvalue problem is obtained by applying the Galerkin finite element method. For particular applications, we are interested in finding some selected low frequency eigenvalues which are located within the interior of the spectrum. The size of the resulting eigenproblem is typically large especially for very fined mesh case so that the parallel polynomial eigensolver is need to deal with such problem. The Jacobi-Davidson method provides a fast and efficient manner for solving the interior eigenvalues for the large sparse polynomial eigenvalue problems. We proposed an Jacobi-Davidson method based on an additive Schwarz framework in parallel implementation and used it to solve the polynomial eigenvalue problem arising from the acoustic. And we showed some parallel performance of the additive Schwarz preconditioned Jacobi-Davidson method by numerical experiments. With help of Krylov-Schwarz algorithm for the correction equation, the efficiency of JD algorithm is greatly improved.
Parr, Victor J. "Preconditioner schemes for elliptic saddle-point matrices based upon Jacobi multi-band polynomial matrices." Thesis, 1995. http://hdl.handle.net/1911/16868.
Full textCheng, Yu-Fen, and 程郁芬. "A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/44294143468577596791.
Full text國立中央大學
數學研究所
100
Many scientific and engineering applications require accurate, fast, robust, and scalable numerical solution of large sparse algebraic polynomial eigenvalue problems (PEVPs) arising from some appropriate discretization of partial differential equations. The polynomial Jacobi-Davidson (PJD) algorithm has been numerically shown as a promising approach for the PEVPs and has gained its popularity for finding their interior spectrum of the PEVPs. The PJD algorithm is a subspace method, which extracts the candidate approximate eigenpair from a search space and the space undated by embedding the solution of the correction equation at the JD iteration. In this research, we propose the two-level PJD algorithm for PEVPs with emphasis on the application of the dissipative acoustic cubic eigenvalue problem. The proposed two-level PJD algorithm is based on the Schwarz framework. The initial basis for the search space is constructed on the current level by using the solution of the same eigenvalue problem, but defined on the previous coarser grid. On the other hand, a low-cost and efficient preconditioner based on Schwarz framework, coarse restricted additive Schwarz (RAS_c) preconditioner for the correction equation, which plays a crucial role in parallel computing for large-scale problems by using a large number of processors. Some numerical examples obtained on a parallel cluster of computers are given to demonstrate the robustness and scalability of our PJD algorithm.