Academic literature on the topic 'Jacobi varieties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jacobi varieties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Jacobi varieties"

1

McIntosh, Ian. "Harmonic tori and generalised Jacobi varieties." Communications in Analysis and Geometry 9, no. 2 (2001): 423–49. http://dx.doi.org/10.4310/cag.2001.v9.n2.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sam, Steven V., and Jerzy Weyman. "Jacobi–Trudi formulas and determinantal varieties." Algebraic Combinatorics 6, no. 5 (2023): 1163–75. http://dx.doi.org/10.5802/alco.299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Namba, Makoto. "GALOIS COVERINGS AND JACOBI VARIETIES OF COMPACT RIEMANN SURFACES." Journal of the Korean Mathematical Society 53, no. 2 (2016): 263–86. http://dx.doi.org/10.4134/jkms.2016.53.2.263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nakayashiki, A., and F. A. Smirnov. "Cohomologies of Affine Hyperelliptic Jacobi Varieties and Integrable Systems." Communications in Mathematical Physics 217, no. 3 (2001): 623–52. http://dx.doi.org/10.1007/s002200100382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Zhi. "A Noether-Lefschetz theorem for varieties of r-planes in complete intersections." Nagoya Mathematical Journal 206 (June 2012): 39–66. http://dx.doi.org/10.1017/s0027763000010527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiang, Zhi. "A Noether-Lefschetz theorem for varieties of r-planes in complete intersections." Nagoya Mathematical Journal 206 (June 2012): 39–66. http://dx.doi.org/10.1215/00277630-1548484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuen, David S. "Second order theta functions and vector bundles over Jacobi varieties." Transactions of the American Mathematical Society 320, no. 2 (1990): 457–92. http://dx.doi.org/10.1090/s0002-9947-1990-1012508-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Jeu, Rob, and James D. Lewis. "Beilinson's Hodge Conjecture for Smooth Varieties." Journal of K-Theory 11, no. 2 (2013): 243–82. http://dx.doi.org/10.1017/is013001030jkt212.

Full text
Abstract:
AbstractLet U/ℂ be a smooth quasi-projective variety of dimension d, CHr (U,m) Bloch's higher Chow group, andclr,m: CHr (U,m) ⊗ ℚ → homMHS (ℚ(0), H2r−m (U, ℚ(r)))the cycle class map. Beilinson once conjectured clr,m to be surjective [Be]; however, Jannsen was the first to find a counterexample in the case m = 1 [Ja1]. In this paper we study the image of clr,m in more detail (as well as at the “generic point” of U) in terms of kernels of Abel-Jacobi mappings. When r = m, we deduce from the Bloch-Kato conjecture (now a theorem) various results, in particular that the cokernel of clm,m at the generic point is the same for integral or rational coefficients.
APA, Harvard, Vancouver, ISO, and other styles
9

Green, Mark, Phillip Griffiths, and Matt Kerr. "Néron models and limits of Abel–Jacobi mappings." Compositio Mathematica 146, no. 2 (2010): 288–366. http://dx.doi.org/10.1112/s0010437x09004400.

Full text
Abstract:
AbstractWe show that the limit of a one-parameter admissible normal function with no singularities lies in a non-classical sub-object of the limiting intermediate Jacobian. Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres, which ‘graphs’ such normal functions. For singular normal functions, an extension of the sub-object by a finite group leads to the Néron models. When the normal function comes from geometry, that is, a family of algebraic cycles on a semistably degenerating family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic cohomology of the singular fibre, hence via regulators onK-groups of its substrata. Two examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds, where this produces interesting arithmetic constraints on such limits. We also show how to compute the finite ‘singularity group’ in the geometric setting.
APA, Harvard, Vancouver, ISO, and other styles
10

Buchstaber, V. M., V. Z. Enolskii, and D. V. Leykin. "Uniformization of jacobi varieties of trigonal curves and nonlinear differential equations." Functional Analysis and Its Applications 34, no. 3 (2000): 159–71. http://dx.doi.org/10.1007/bf02482405.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Jacobi varieties"

1

Tavoularis, Stylianos. "Hegel, Plotinus and Jacobi: idealism and two varieties of mysticism." Thesis, University of Sheffield, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485070.

Full text
Abstract:
In this thesis I investigate Hegel's idealism and Plotinus' and Jacobi' varieties of mysticism. My intention was to examine Hegel's reception of Plotinus and discover whether it is textually accurate in relation to the texts from Plotinus' Enneads. I discovered that Hegel's interpretation is not consistent with the Plotinian texts and I concluded that Hegel misinterpreted Plotinus despite his commitment in the Introduction to the Lectures on the History ofPhilosophy not to attribute to earlier philosophers what's not historically reported about their philosophies. In part this misinterpretation is explained by the fact that Hegel also committed himself in the Introduction to avoid historicism as well as one-sided critical accounts. I also discovered that Hegel had also a more specific hermeneutical intention as regards his treatment of Plotinus, which was to protect him from the charge ofbeing a mystic. Plotinus was vulnerable to this charge -as Hegel explains- because of the doctrine ofthe 'ecstasy', the alleged ineffability ofhis absolute and finally because of his representational rather than philosophical language. Hegel's defence suggests that Plotinus was not a mystic at all but rather that he should be view as anticipating Hegel's cardinal doctrine ofReason, which is in-and-for itself. My next intention was to explain Hegel's bias behind his misinterpretation ofPlotinus and I discovered that Hegel had been defending Plotinus precisely on the same core issues that he had been criticising his contemporary self-proclaimed mystic, F. H. Jacobi. Thus I provided a general account of Jacobi and then Hegel's critique of Jacobi to demonstrate the dangerous similarities between Plotinus and Jacobi. Finally I have suggested an alternative way to distinguish between Plotinus and Jacobi, which however distinguishes between two varieties of mysticism rather than idealism and mysticism as Hegel intended his distinction between Plotinus and Jacobi to be.
APA, Harvard, Vancouver, ISO, and other styles
2

Richez, Thomas. "Anneaux tautologiques sur les variétés Jacobiennes de courbes avec automorphismes et les variétés de Prym généralisées." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD011/document.

Full text
Abstract:
On étudie dans cette thèse les cycles algébriques sur les variétés Jacobiennes de courbes complexes projectives lisses qui admettent des automorphismes non triviaux. Il s'agit plus précisément d'étudier de nouveaux anneaux tautologiques associés à des groupes d’automorphismes de la courbe. On montre que ces Q-algèbres naturelles de cycles algébriques sur les Jacobiennes se restreignent en des familles de cycles sur certaines sous-variétés spéciales de la Jacobienne et que celles-ci méritent encore le nom d'anneaux tautologiques sur ces sous-variétés. On étudie en détail le cas des courbes hyperelliptiques; situation dans laquelle les algèbres introduites admettent un nombre fini de générateurs, et en particulier sont de dimension finie. On peut alors être très précis dans l'étude des relations entre ces générateurs. Enfin, on montre que ces anneaux tautologiques apparaissent naturellement dans un autre contexte : celui des systèmes linéaires complets sans point de base<br>In this thesis we study algebraic cycles on Jacobian varieties of smooth projective complex curves with non trivial automorphisms. More precisely, we introduce new tautological rings associated to groups of automorphisms of the curve. We show that these natural Q-algebras of algebraic cycles on Jacobians induce a good notion of tautological rings on some particular subvarieties of the Jacobian. We then study in detail the case of hyperelliptic curves. In this case, the tautological rings admit a finite number of generators, and in particular are of finite dimension. We can then be very precise when studying the relations between these generators. Finally, we present another situation in which these tautological rings appear: when we consider complete linear series without base point
APA, Harvard, Vancouver, ISO, and other styles
3

Botero, Ana María. "b-divisors on toric and toroidal embeddings." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18140.

Full text
Abstract:
In dieser Dissertation entwickeln wir eine Schnittheorie von torischen bzw. toroidalen b-Divisoren auf torischen bzw. toroidalen Einbettungen. Motiviert wird dies durch das Ziel, eine arithmetische Schnittheorie auf gemischten Shimura- Varietäten von nicht-kompaktem Typ zu begründen. Die bisher zur Verfügung stehenden Werkzeuge definieren keine numerischen Invarianten, die birational invariant sind. Zuerst definieren wir torische b-Divisoren auf torischen Varietäten und einen Integrabilitätsbegriff für solche Divisoren. Wir zeigen, dass torische b-Divisoren unter geeigneten Annahmen an die Positivität integrierbar sind und dass ihr Grad als das Volumen einer konvexen Menge gegeben ist. Außerdem zeigen wir, dass die Dimension des Vektorraums der globalen Schnitte eines torischen b-Divisors, der nef ist, gleich der Anzahl der Gitterpunkte in besagter konvexer Menge ist und wir geben eine Hilbert–Samuel-Formel für das asymptotische Wachstum dieser Dimension. Dies verallgemeinert klassische Resultate für klassische torische Divisoren auf torischen Varietäten. Als ein zusätzliches Resultat setzen wir konvexe Mengen, die von torischen b-Divisoren kommen, mit Newton–Okounkov- Körpern in Beziehung. Anschließend definieren wir toroidale b-Divisoren auf toroidalen Varietäten und einen Integrierbarkeitsbegriff für solche Divisoren. Wir zeigen, dass unter geeigneten Positivitätsannahmen toroidale b-Divisoren integrierbar sind und ihr Grad als ein Integral bezüglich eines Grenzmaßes aufgefasst werden kann. Dieses Grenzmaß ist ein schwacher Grenzwert von diskreten Maßen, deren Gewichte über tropische Schnittheorie auf rationalen konischen polyedrischen Komplexen definiert sind, welche zu der toroidalen Varietät gehören. Wir setzen dieses Grenzmaß ebenfalls in Beziehung zum zu einem konvexen Körper assoziierten Flächeninhaltsmaß. Diese Beziehung erlaubt es uns, Integrale bezüglich des Grenzmaßes explizit auszurechnen. Zusätzlich erhalten wir eine kanonische Zerlegung der Differenz zweier konvexer Mengen und eine Beziehung zwischen das Volumen von den Teilen und tropische Schnittheoretische Mengen. Schließlich berechnen wir als Anwendung den Grad des b-Divisors von Jacobiformen vom Gewicht k und Index m bezüglich der Hauptkongruenzuntergruppe zum Level N >= 3 auf der verallgemeinerten universellen elliptischen Kurve und wir zeigen, dass der b-divisoriale Ansatz gegenüber lediglich einer kanonischen Kompaktifizierung Vorteile bietet.<br>In this thesis we develop an intersection theory of toric and toroidal b-divisors on toric and toroidal embeddings, respectively. Our motivation comes from wanting to establish an arithmetic intersection theory on mixed Shimura varieties of non- compact type. The tools available until now do not define numerical invariants which are birationally invariant. First, we define toric b-divisors on toric varieties and an integrability notion of such divisors. We show that under suitable positivity assumptions toric b- divisors are integrable and that their degree is given as the volume of a convex set. Moreover, we show that the dimension of the space of global sections of a nef toric b-divisor is equal to the number of lattice points in this convex set and we give a Hilbert-Samuel type formula for its asymptotic growth. This generalizes classical results for classical toric divisors on toric varieties. As a by-product, we relate convex sets arising from toric b-divisors with Newton-Okounkov bodies. Then, we define toroidal b-divisors on toroidal varieties and an integrability notion of such divisors. We show that under suitable positivity assumptions toroidal b-divisors are integrable and that their degree is given as an integral with respect to a limit measure, which is a weak limit of discrete measures whose weights are defined via tropical intersection theory on the rational con- ical polyhedral complex attached to the toroidal variety. We also relate this limit measure with the surface area measure associated to a convex body. This relation enables us to compute integrals with respect to these limit measures ex- plicitly. Additionally, we give a canonical decomposition of the difference of two convex sets and we relate the volume of the pieces to tropical top intersection numbers. Finally, as an application, we compute the degree of the b-divisor of Jacobi forms of weight k and index m with respect to the principal congruence subgroup of level N >= 3 on the generalized universal elliptic curve and we show that it is meaningful to consider the b-divisorial approach instead of just fixing one canonical compactification.
APA, Harvard, Vancouver, ISO, and other styles
4

Takashima, Katsuyuki. "Computational Aspects of Jacobian Varieties and Their Cryptographic Applications." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/123843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

NUNES, DA COSTA MAVIGNE SOUSA JOANA. "Actions de groupes de lie sur des varietes et des fibres de jacobi et reduction." Paris 6, 1991. http://www.theses.fr/1991PA066262.

Full text
Abstract:
Etant donne une sous-variete n d'une variete de jacobi m, on definit un feuilletage de n, a l'aide d'un sous-fibre f de t#nm tel que l'espace des feuilles soit une variete differentiable munie d'une structure de jacobi, dite reduite. On dit alors que le triplet (m,n,f) est jacobi-reductible. On demontre un theoreme de reduction qui donne les conditions necessaires et suffisantes pour qu'un triplet (m,n,f) soit jacobi-reductible. La variete des orbites d'une action quotientante de jacobi d'un groupe de lie sur une variete de jacobi est une variete de jacobi reduite. On presente des cas particuliers de reduction qui permettent la definition d'une structure de jacobi induite sur la sous-variete de la variete de jacobi. En utilisant la reduction de jacobi, on generalise un important theoreme de reduction symplectique etabli par marsden et weinstein. On etablit une relation entre la reduction d'une variete de jacobi et celle de sa variete de poisson homogene associee. On etudie aussi la notion de reduction d'un fibre de jacobi. On definit un feuilletage de l'espace total et un autre feuilletage, etant la projection du premier, de la variete base du fibre du jacobi. Ces feuilletages sont definis de facon a qu'on puisse construire, avec les structures feuilletees, un nouveau fibre de jacobi, qu'on appelle reduit. On etudie la reduction d'un fibre de jacobi par action d'un groupe de lie. Quelques exemples d'application sont presentes
APA, Harvard, Vancouver, ISO, and other styles
6

YACOUB, CHOKRI. "Analyse sur les varietes harmoniques an et d'une classe d'operateurs differentiels generalisant l'operateur de jacobi." Paris 11, 1994. http://www.theses.fr/1994PA112363.

Full text
Abstract:
Cette these est constituee de trois chapitres qui peuvent se lire independamment. Chapitre 1. Si on considere n un groupe de type heisenberg (notion introduite par a. Kaplan) et a identifie a r*#+ qui agit par dilatation, alors le groupe de lie an muni d'une metrique riemannienne invariante a gauche devient une variete harmonique generalisant les espaces riemanniens symetriques de type non compact et de rang un. E. Damek et f. Ricci ont observe qu'en plus de ces derniers, il y a une infinite de varietes harmoniques de type an. (infirmant ainsi une conjecture de a. Lichnerowicz). L'analyse radiale sur ces varietes n'a commence a etre etudiee que recemment par, entre autres auteurs, j. P. Anker, e. Damek et f. Ricci. Dans ce chapitre on montre que certains resultats d'analyse harmonique sur les espaces symetriques s'etendent aux varietes harmoniques a n: critere pourqu'un noyau radial positif definisse un operateur de type faible (1, 1), borne superieure du noyau de la chaleur pour l'operateur de laplace-beltrami et comme consequences: inegalite de type faible (1, 1) pour l'operateur maximal de hardy-littlewood, pour l'operateur maximal de la chaleur et pour la transformation de riesz. Chapitre 2. Entre autres auteurs, a. Achour, h. Chebli, a. Fitouhi, k. Trimeche, ont etudie une classe de laplaciens radiaux generalisant l'operateur de jacobi et en particulier la partie radiale de l'operateur de laplace-beltrami sur les varietes harmoniques a n considerees au premier chapitre. Dans ce cadre, on remarque un phenomene de kunze-stein, on obtient une borne superieure du noyau de la chaleur et du noyau de poisson et on en deduit la continuite l#p pour des fonctions de littlewood-paley-stein modifiees (introduites par n. Lohoue), pour la transformee de riesz ainsi qu'un resultat de multiplicateurs. Chapitre 3. On considere sur un espace riemannien symetrique de type compact, des differences finies de la moyenne spherique d'une fonction de l#p. Elles nous permettent de definir un espace fonctionnel de holder et d'en obtenir une caracterisation a l'aide de la theorie de l'approximation par des polynomes spheriques. C'est une generalisation des resultats de p. I. Lizorkin et s. M. Nikol'skii sur la sphere unite
APA, Harvard, Vancouver, ISO, and other styles
7

Lahoz, Vilalta Marti. "Theta-duality in abelian varieties and the bicanonical map of irregular varieties." Doctoral thesis, Universitat Politècnica de Catalunya, 2010. http://hdl.handle.net/10803/77898.

Full text
Abstract:
The first goal of this Thesis is to contribute to the study of principally polarized abelian varieties (ppav), especially to the Schottky and the Torelli problems. Ppav admit a duality theory analogous to that of projective spaces, where the role played by hyperplanes in projective spaces is played by divisors representing the principal polarization. Thus, given a subvariety Y of a ppav, we can define its thetadual T(Y) as the set of divisors representing the principal polarization that contain this subvariety. This set admits a natural schematic structure (as defined by Pareschi and Popa). Jacobian and Prym varieties are classical examples of ppav constructed from curves. Besides, they are interesting because some properties of the curves involved in their construction are reflected in their geometry or in the geometry of some special subvarieties. For example, in the case of Jacobians we have the BrillNoether loci Wd ( W1 corresponds to the AbelJacobi curve) and in the case of Pryms we have the AbelPrym curve C. In chapter III, we study the schematic structure of the thetadual of the BrillNoether loci Wd and the AbelPrym curve. In the first case, we obtain with different methods, the result of Pareschi and Popa T(Wd)= Wgd1. In the case of the AbelPrym curve C, we get that T(C)=V², where V² is the second PrymBrillNoether locus with the schematic structure defined by Welters. Pareschi and Popa have proved a result for ppavs analogous to the Castelnuovo Lemma for projective spaces. That is, if (A,Θ) is a ppav of dimension g, then g+2 distinct points in general position with respect to Θ, but in special position with respect to 2Θ, have to be contained in a curve of minimal degree in A, i.e. an AbelJacobi curve. In particular, they obtain a Schottky result because A has to be a Jacobian variety and a Torelli result, because the curve is the intersection of all the divisors in |2Θ| that contain the g+2 points. In chapter IV, as Eisenbud and Harris have done in the projective Castelnuovo Lemma, we extend this result to possibly nonreduced finite schemes. The second goal of this thesis is the study of varieties of general type. Almost by definition, pluricanonical maps are the essential tool to study them. One of the main problems in this area is to find geometric or numerical conditions to guarantee that the mth pluricanonical map (for low m) induces a birational equivalence with its image. The classification of surfaces whose bicanonical map is nonbirational has attracted considerable interest among algebraic geometers. In chapter V, we give a sufficient numerical condition for the birationality of the bicanonical map of irregular varieties of arbitrary dimension. We also prove that, if X is a primitive variety, then it only admits very special fibrations to other irregular varieties. For primitive varieties we get that the following are equivalent: X is birational to a divisor Θ in an indecomposable ppav, the irregularity q(X) > dim X and the bicanonical map is nonbirational. When X is a primitive variety of general type and q(X) = dim X we prove, under certain conditions over the Stein factorization of the Albanese map, that the only possibility for the bicanonical map being nonbirational is that X is a double cover branched along a divisor in |2Θ|. These results extend to arbitrary dimension, wellknown theorems in the case of surfaces and curves.<br>El primer objectiu d'aquesta tesi és contribuir a l'estudi de les varietats abelianes principalment polaritzades (vapp), especialment als problemes de Schottky i Torelli. Les vapp admeten una teoria de dualitat anàloga a la dualitat dels espais projectius, on el paper que juguen els hiperplans de l'espai projectiu és substituït pels divisors que representen la polarització principal. Així doncs, donada una subvarietat Y d'una vapp, podem definir el seu thetadual T(Y) com el conjunt dels divisors que representen la polarització principal i contenen aquesta subvarietat. Aquest conjunt admet una estructura esquemàtica natural (tal i com la defineixen Pareschi i Popa). Les varietats Jacobianes i de Prym són exemples clàssics de vapp construïdes a partir de corbes. A més, són interessants perquè certes propietats de les corbes involucrades es veuen reflectides en elles o en algunes subvarietats especials. Per exemple, en el cas de les Jacobianes tenim els llocs de BrillNoether Wd ( W1 correspon a la corba d'AbelJacobi) i en el cas de les Pryms tenim la corba d'AbelPrym C. Al capítol III de la tesi s'estudia l'estructura esquemàtica del thetadual dels llocs de BrillNoether Wd i de la corba d'AbelPrym. En el primer cas, es reobté amb uns altres mètodes, el resultat de Pareschi i Popa T(Wd)= Wgd1. En el cas de la corba d'AbelPrym C, s'obté que T(C)=V², onV² és el segon lloc de PrymBrillNoether amb l'estructura esquemàtica definida per Welters. Pareschi i Popa han demostrat un resultat anàleg per les vapp al Lemma de Castelnuovo pels espais projectius. És a dir, si (A,Θ) és una vapp de dimensió g, aleshores g+2 punts en posició general respecte Θ, però en posició especial respecte 2Θ, han d'estar continguts en una corba de grau minimal a A, i.e. una corba d'AbelJacobi. En particular, s'obté un resultat de Schottky ja que A ha de ser una Jacobiana i un resultat de Torelli, ja que la corba és la intersecció de tots els divisors de |2Θ| que contenen els g+2 punts. Al capítol IV, tal i com Eisenbud i Harris van fer en el cas projectiu, s'estén aquest resultat a esquemes finits possiblement no reduïts. El segon objectiu d'aquesta tesi és contribuir a l'estudi de les varietats de tipus general. Pràcticament per definició, les aplicacions pluricanòniques són essencials pel seu estudi. Un dels problemes principals de l'àrea és donar condicions geomètriques o numèriques per assegurar que la mèsima aplicació pluricanònica (per m baix) indueix una equivalència biracional amb la imatge. La classificació de les superfícies que tenen l'aplicació bicanònica no biracional ha atret l'atenció de molts geòmetres algebraics. Al capítol V, es dóna un criteri numèric suficient per assegurar la biracionalitat de l'aplicació bicanònica de les varietats irregulars de dimensió arbitrària. També es demostra que si X és una varietat primitiva, aleshores només admet fibracions molt especials a altres varietats irregulars. Per aquestes varietats s'obté que és equivalent que X sigui biracional a un divisor Θ en una vapp indescomponible, a què la irregularitat q(X) > dim X i l'aplicació bicanònica sigui no biracional. Quan X és una varietat primitiva de tipus general i q(X) = dim X es demostra sota certes condicions de la descomposició de Stein del morfisme d'Albanese, que l'única possibilitat per tal que l'aplicació bicanònica sigui no biracional és que X sigui un recobriment doble sobre una vapp ramificat al llarg d'un divisor a |2Θ|. Aquest resultats estenen a dimensió arbitrària, teoremes ben coneguts en el cas de superfícies i corbes.
APA, Harvard, Vancouver, ISO, and other styles
8

Rogale, Plazonic Kristina. "Limits of invariants of algebraic cycles in a geometric degeneration /." 2003. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3097150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frizzell, Carrie. "Prym Varieties of Tropical Plane Quintics." Thesis, 2018. http://hdl.handle.net/2097/38898.

Full text
Abstract:
Master of Science<br>Department of Mathematics<br>Ilia Zharkov<br>When considering an unramified double cover π: C’→ C of nonsingular algebraic curves, the Prym variety (P; θ) of the cover arises from the sheet exchange involution of C’ via extension to the Jacobian J(C’). The Prym is defined to be the anti-invariant (odd) part of this induced map on J(C’), and it carries twice a principal polarization of J(C’). The pair (P; θ), where θ is a representative of a theta divisor of J(C’) on P, makes the Prym a candidate for the Jacobian of another curve. In 1974, David Mumford proved that for an unramified double cover π : C’η →C of a plane quintic curve, where η is a point of order two in J(C), then the Prym (P; θ) is not a Jacobian if the theta characteristic L(η) is odd, L the hyperplane section. We sought to find an analog of Mumford's result in the tropical geometry setting. We consider the Prym variety of certain unramified double covers of three types of tropical plane quintics. Applying the theory of lattice dicings, which give affine invariants of the Prym lattice, we found that when the parity α(H3) is even, H3 the cycle associated to the hyperplane section and the analog to η in the classical setting, then the Prym is not a Jacobian, and is a Jacobian when the parity is odd.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Jacobi varieties"

1

Fujimori, Masami. Integral and rational points on algebraic curves of certain types and their Jacobian varieties over number fields. Tohoku University, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fujimori, Masami. Integral and rational points on algebraic curves of certain types and their Jacobian varieties over number fields. Tohoku University, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lectures on Riemann Surfaces: Jacobi Varieties. Princeton University Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gunning, Robert C. Lectures on Riemann Surfaces: Jacobi Varieties. Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gunning, Robert C. Lectures on Riemann Surfaces: Jacobi Varieties. Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gunning, Robert C. Lectures on Riemann Surfaces: Jacobi Varieties. Princeton University Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

A scrapbook of complex curve theory. 2nd ed. American Mathematical Society, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuhn, Robert Michael. On the canonical Galois closure of the universal elliptic curve over X1(n). 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Contributor), V. S. Kulikov, P. F. Kurchanov (Contributor), V. V. Shokurov (Contributor), A. N. Parshin (Editor), I. R. Shafarevich (Editor), and I. Rivin (Translator), eds. Algebraic Geometry III: Complex Algebraic Varieties. Algebraic Curves and Their Jacobians (Encyclopaedia of Mathematical Sciences). Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koenigs, Thomas. Founded in Fiction. Princeton University Press, 2021. http://dx.doi.org/10.23943/princeton/9780691188942.001.0001.

Full text
Abstract:
What is the use of fiction? This question preoccupied writers in the early United States, where many cultural authorities insisted that fiction reading would mislead readers about reality. This book argues that this suspicion made early American writers especially attuned to one of fiction's defining but often overlooked features—its fictionality. The book shows how these writers explored the unique types of speculative knowledge that fiction could create as they sought to harness different varieties of fiction for a range of social and political projects. Spanning the years 1789 to 1861, the book challenges the “rise of novel” narrative that has long dominated the study of American fiction by highlighting how many of the texts that have often been considered the earliest American novels actually defined themselves in contrast to the novel. Their writers developed self-consciously extranovelistic varieties of fiction, as they attempted to reform political discourse, shape women's behavior, reconstruct a national past, and advance social criticism. The book features original discussions of a wide range of canonical and lesser-known writers, including Hugh Henry Brackenridge, Royall Tyler, Charles Brockden Brown, Leonora Sansay, Catharine Maria Sedgwick, Edgar Allan Poe, Robert Montgomery Bird, George Lippard, Harriet Beecher Stowe, Frederick Douglass, and Harriet Jacobs. By reframing the history of the novel in the United States as a history of competing varieties of fiction, the book shows how these fictions structured American thinking about issues ranging from national politics to gendered authority to the intimate violence of slavery.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Jacobi varieties"

1

Alber, Solomon J. "Hamiltonian Systems on the Jacobi Varieties." In Mathematical Sciences Research Institute Publications. Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9725-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reider, Igor. "Toward abel-jacobi theory for higher dimensional varieties." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0083345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alber, S. J. "Complex Deformation of Integrable Hamiltonians over Generalized Jacobi Varieties." In Springer Series in Nonlinear Dynamics. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77769-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smirnov, Fedor A., and Vadim Zeitlin. "On The Quantization of Affine Jacobi Varieties of Spectral Curves." In Statistical Field Theories. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0514-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lütkebohmert, Werner. "Jacobian Varieties." In Rigid Geometry of Curves and Their Jacobians. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27371-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milne, J. S. "Jacobian Varieties." In Arithmetic Geometry. Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4613-8655-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Birkenhake, Christina, and Herbert Lange. "Jacobian Varieties." In Complex Abelian Varieties. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lange, Herbert, and Christina Birkenhake. "Jacobian Varieties." In Complex Abelian Varieties. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02788-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lange, Herbert. "Jacobian Varieties." In Grundlehren Text Editions. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25570-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Birkenhake, Christina, and Herbert Lange. "The Hodge Conjecture for General Abelian and Jacobian Varieties." In Complex Abelian Varieties. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06307-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Jacobi varieties"

1

Abdel-Malek, K., Walter Seaman, and Harn-Jou Yeh. "An Exact Method for NC Verification of up to 5-Axis Machining." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8560.

Full text
Abstract:
Abstract The motion of a cutter tool is modeled as a surface undergoing a sweep operation along another geometric entity. A numerically controlled machining verification method is developed based on a formulation for delineating the volume generated by the motion of a cutting tool on the workpiece (stock). Varieties and subvarieties that are subsets of some Eucledian space defined by the zeros of a finite number of analytic functions are computed and are characterized as closed form equations of surface patches of this volume. A topological space describing the swept volume will be built as a stratified manifold with corners. Singularities of the variety are loci of points where the Jacobian of the manifold has lower rank than maximal. It is shown that varieties appearing inside the manifold representing the removed material are due to a lower degree strata of the Jacobian. Some of the varieties are complicated (so as not to confuse with varieties in complex Cn) and will be shown to be reducible because of their parametrization and are addressed. Benefits of this method are evident in its ability to depict the manifold and to compute a value for the volume.
APA, Harvard, Vancouver, ISO, and other styles
2

Cohen, Ran. "Group Law Algorithms for Jacobian Varieties of Curves over Finite Fields." In Proceedings of the First SAGA Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793430_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Müller, Andreas, and Zijia Li. "Identification of Singularities and Real and Complex Solution Varieties of the Loop Constraints of Linkages Using the Kinematic Tangent Cone." In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-114638.

Full text
Abstract:
Abstract The configuration space (c-space) of a mechanism is the real solution variety of a set of loop closure constraints. Singularities of this variety (referred to as c-space singularities) are singular configurations of the mechanism. In addition, a mechanism may exhibit other kinematic singularities that are not visible from the differential geometry of the c-space (referred to as hidden singularities). The latter is related to a drop in the rank of the constraint Jacobian while the c-space is locally a smooth manifold. Another kinematic feature that is only due to the corank of the constraint Jacobian is the shakiness of a mechanism. Such situations were analyzed by investigating the local geometry of the c-space and its corank stratification. It has been shown recently that hidden singularities and shakiness can be attributed to the fact that complex solution branches intersect with the c-space, i.e., with real solution branches. This paper employs the kinematic tangent cone to identify local solution branches. While the kinematic tangent cone is an established generally applicable concept, which gives rise to a computational (numeric and symbolic) algorithm, it has yet only been applied for analyzing the real solution set. The method is shown for several examples. Further, the algebraic aspects are briefly elaborated.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Ju, and J. Michael McCarthy. "Singularity Variety of a 3SPS-1S Spherical Parallel Manipulator." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60416.

Full text
Abstract:
In this paper, we study the manifold of configurations of a 3SPS-1S spherical parallel manipulator. This manifold is obtained as the intersection of quadrics in the hypersphere defined by quaternion coordinates and is called its constraint manifold. We then formulate Jacobian for this manipulator and consider its singular. This is a quartic algebraic manifold called the singularity variety of the parallel manipulator. A survey of the architectures that can be defined for the 3SPS-1S spherical parallel manipulators yield a number of special cases, in particular the architectures with coincident base or moving pivots yields singularity varieties that factor into two quadric surfaces.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!