Academic literature on the topic 'Jacobian matrix'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jacobian matrix.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jacobian matrix"
Xu, Yong-Xian, D. Kohli, and Tzu-Chen Weng. "Direct Differential Kinematics of Hybrid-Chain Manipulators Including Singularity and Stability Analyses." Journal of Mechanical Design 116, no. 2 (June 1, 1994): 614–21. http://dx.doi.org/10.1115/1.2919422.
Full textLópez, M., E. Castillo, G. García, and A. Bashir. "Delta robot: Inverse, direct, and intermediate Jacobians." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220, no. 1 (January 1, 2006): 103–9. http://dx.doi.org/10.1243/095440606x78263.
Full textNiitsuma, Hiroshi. "Jacobian matrix and p-basis." Banach Center Publications 26, no. 2 (1990): 185–88. http://dx.doi.org/10.4064/-26-2-185-188.
Full textFang, Wang, Yang Zhen, Q. S. Kang, Shang Dong Xi, and Lin Yang Shang. "A Simulation Research on the Visual Servo Based on Pseudo-Inverse of Image Jacobian Matrix for Robot." Applied Mechanics and Materials 494-495 (February 2014): 1212–15. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1212.
Full textLIU, Zhizhong. "Jacobian Matrix Normalization Based on Variable Weighting Matrix." Journal of Mechanical Engineering 50, no. 23 (2014): 29. http://dx.doi.org/10.3901/jme.2014.23.029.
Full textKim, S. S., and M. J. Vanderploeg. "QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems." Journal of Mechanisms, Transmissions, and Automation in Design 108, no. 2 (June 1, 1986): 183–88. http://dx.doi.org/10.1115/1.3260800.
Full textLeung, A. Y. T., and T. Ge. "Toeplitz Jacobian Matrix for Nonlinear Periodic Vibration." Journal of Applied Mechanics 62, no. 3 (September 1, 1995): 709–17. http://dx.doi.org/10.1115/1.2897004.
Full textvan den Essen, Arno, and Engelbert Hubbers. "Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian conjecture." Linear Algebra and its Applications 247 (November 1996): 121–32. http://dx.doi.org/10.1016/0024-3795(95)00095-x.
Full textReutenauer, Christophe. "Applications of a noncommutative jacobian matrix." Journal of Pure and Applied Algebra 77, no. 2 (February 1992): 169–81. http://dx.doi.org/10.1016/0022-4049(92)90083-r.
Full textChèze, G., and S. Najib. "Indecomposability of polynomials via Jacobian matrix." Journal of Algebra 324, no. 1 (July 2010): 1–11. http://dx.doi.org/10.1016/j.jalgebra.2010.01.007.
Full textDissertations / Theses on the topic "Jacobian matrix"
葛彤 and Tong Ge. "Toeplitz Jacobian matrix and nonlinear dynamical systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31234860.
Full textGe, Tong. "Toeplitz Jacobian matrix and nonlinear dynamical systems /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18987977.
Full textBillups, Stephen C. "An augmented Jacobian matrix algorithm for tracking homotopy zero curves." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/90914.
Full textM.S.
Bourji, Samih Kassem. "Least-Change Secant Updates of Non-Square Matrices." DigitalCommons@USU, 1987. https://digitalcommons.usu.edu/etd/6989.
Full textKHER, SAMEER. "IMPROVING ANALOG SIMULATION SPEED USING THE SELECTIVE MATRIX UPDATE APPROACH IN A VHDL-AMS SIMULATOR." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1107287248.
Full textJones, Jeffrey S. "Analysis of Algorithms for Star Bicoloring and Related Problems." Ohio University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1426770501.
Full textKorkmaz, Lale. "Static Force Production Analysis in a 3D Musculoskeletal Model of the Cat Hindlimb." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5193.
Full textOnur, Omer. "Effect Of Jacobian Evaluation On Direct Solutions Of The Euler Equations." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1098268/index.pdf.
Full text#8217
s Method. Both analytical and numerical methods are used for Jacobian calculations. Numerical method has the advantage of keeping the Jacobian consistent with the numerical flux vector without extremely complex or impractical analytical differentiations. However, numerical method may have accuracy problem and may need longer execution time. In order to improve the accuracy of numerical method detailed error analyses were performed. It was demonstrated that the finite-difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A relation was developed for optimum perturbation magnitude that can minimize the error in numerical Jacobians. Results show that very accurate numerical Jacobians can be calculated with optimum perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated for only related cells. A sparse matrix solver based on LU factorization is used for the solution, and to improve the Jacobian matrix solution some strategies are considered. Effects of different flux splitting methods, higher-order discretizations and several parameters on the performance of the solver are analyzed.
Meyer, Arnd. "Stable evaluation of the Jacobians for curved triangles." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600629.
Full textCao, Weiran. "Linear Modeling of DFIGs and VSC-HVDC Systems." Thesis, KTH, Elektrisk energiomvandling, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177643.
Full textNyligen, med ökande tillämpning av vindkraft, det system som bygger på den dubbeltmatad induktion generator (DFIG) har blivit en av de mest populära begrepp. Problemetmed att ansluta till nätet är också gradvis avslöjas. Som en effektiv lösning för att anslutavindkraftpark är VSC -HVDC linje det lämpligaste valet av stabilitetsskäl. Det finns dockmöjligheter att omvandlaren en VSC-HVDC länk negativt kan interagera medvindturbinen och genererar dåligt dämpade under synkron svängningar. Därför kommerdetta examensarbete härleda den linjära modellen av en enda DFIG liksom den linjäramodellen av flera DFIGs ansluter till en VSC-HVDC -länk. För arise metoden kommerJacobian transfer matrix modelleringsmetodförklaras och antas. Jämförelse mellan denlinjära modellen och identiskt system i PSCAD frekvensgången och tidsdomänensvarkommer att presenteras för godkännande.
Books on the topic "Jacobian matrix"
Reider, Igor. Nonabelian Jacobian of Projective Surfaces: Geometry and Representation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textVinokur, Marcel. Flux Jacobian matrices and generalized Roe average for an equilibrium real gas. Washington, D. C: NASA, 1988.
Find full textJacobians of matrix transformations and functions of matrix argument. Singapore: World Scientific Pub., 1997.
Find full textEngel, Andreas. Taylorentwicklung, Jacobi-Matrix, ∇, δ(x) und Co. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-59752-1.
Full textAlmazán, Vicente. Alsacia jacobea: Introducción al estudio de las peregrinaciones alsacianas a Santiago de Compostela : historia, literatura, arte. Vigo, Galicia: Nigra Arte, 1994.
Find full textLitvinov, G. L. (Grigoriĭ Lazarevich), 1944- editor of compilation and Sergeev, S. N., 1981- editor of compilation, eds. Tropical and idempotent mathematics and applications: International Workshop on Tropical and Idempotent Mathematics, August 26-31, 2012, Independent University, Moscow, Russia. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textCenter, Ames Research, ed. Flux Jacobian matrices and generalized Roe average for an equilibrium real gas. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Find full textTanasa, Adrian. Combinatorial Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895493.001.0001.
Full textEngel, Andreas. Taylorentwicklung, Jacobi-Matrix, ∇, δ und Co.: Rechenmethoden für Studierende der Physik. Springer Spektrum, 2020.
Find full textAnderson, Greg W. Spectral statistics of orthogonal and symplectic ensembles. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.5.
Full textBook chapters on the topic "Jacobian matrix"
Resendis-Antonio, Osbaldo. "Jacobian Matrix." In Encyclopedia of Systems Biology, 1061–62. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1367.
Full textLin, Psang Dain. "Optical Path Length and Its Jacobian Matrix." In Advanced Geometrical Optics, 353–69. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2299-9_14.
Full textNotash, Leila. "On the Perturbation of Jacobian Matrix of Manipulators." In Advances on Theory and Practice of Robots and Manipulators, 63–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07058-2_8.
Full textYoshida, Kazuya, and Yoji Umetani. "Control of Space Manipulators with Generalized Jacobian Matrix." In The Kluwer International Series in Engineering and Computer Science, 165–204. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3588-1_7.
Full textHsieh, Yi-Zeng, Mu-Chun Su, and Yu-Lin Jeng. "The Jacobian Matrix-Based Learning Machine in Student." In Emerging Technologies for Education, 469–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71084-6_55.
Full textRill, Georg. "Smoothing discontinuities in the Jacobian Matrix by Global Derivatives." In Non-smooth Problems in Vehicle Systems Dynamics, 253–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01356-0_22.
Full textXin, Hongbing, Qiang Huang, Xingguang Duan, and Yueqing Yu. "A New Expression to Construct Jacobian Matrix of Parallel Mechanism." In Intelligent Robotics and Applications, 111–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-88513-9_13.
Full textQi, Lizhe, Leibin Yu, Wei Wang, Lei Chen, and Chao Yun. "Analysis of the Robot Positioning Error Based on Jacobian Matrix." In Advances in Mechanical and Electronic Engineering, 329–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31507-7_54.
Full textJing, Liping, Dong Deng, and Jian Yu. "Weighting Exponent Selection of Fuzzy C-Means via Jacobian Matrix." In Knowledge Science, Engineering and Management, 115–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12096-6_11.
Full textIpbuker, Cengizhan. "Inverse Transformation for Several Pseudo-cylindrical Map Projections Using Jacobian Matrix." In Computational Science and Its Applications – ICCSA 2009, 553–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02454-2_40.
Full textConference papers on the topic "Jacobian matrix"
Sovizi, Javad, Aliakbar Alamdari, and Venkat N. Krovi. "A Random Matrix Approach to Manipulator Jacobian." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3950.
Full textXu, Yong-Xian, Dilip Kohli, and Tzu-Chen Weng. "Direct Differential Kinematics of Hybrid-Chain Manipulators Including Singularity and Stability Analyses." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0199.
Full textWang, Xiaozhe, and Konstantin Turitsyn. "PMU-based estimation of dynamic state Jacobian matrix." In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2017. http://dx.doi.org/10.1109/iscas.2017.8050926.
Full textDaher, Nivine Abou, Imad Mougharbel, Maarouf Saad, Hadi Y. Kanaan, and Dalal Asber. "Pilot buses selection based on reduced Jacobian matrix." In 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2015. http://dx.doi.org/10.1109/sege.2015.7324611.
Full textKolka, Zdenek, Viera Biolkova, Zdenek Kincl, and Dalibor Biolek. "Parametric reduction of Jacobian matrix for fault analysis." In 2010 International Conference on Microelectronics (ICM). IEEE, 2010. http://dx.doi.org/10.1109/icm.2010.5696200.
Full textHosseinzadegan, Samar, Shireen Geimer, Andreas Fhager, Mikael Persson, and Paul Meaney. "Fast Jacobian Matrix Formulation for Microwave Tomography Applications." In 2021 15th European Conference on Antennas and Propagation (EuCAP). IEEE, 2021. http://dx.doi.org/10.23919/eucap51087.2021.9411451.
Full textLu, Yi, and Bo Hu. "Solving Jacobian Matrix of Parallel Manipulators With Linear Driving Limbs by Using CAD Variation Geometric Approach." In ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99019.
Full textAbdi, Hamid, Saeid Nahavandi, and Anthony A. Maciejewski. "Optimal fault-tolerant Jacobian matrix generators for redundant manipulators." In 2011 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2011. http://dx.doi.org/10.1109/icra.2011.5979802.
Full textBrown, Brandon, Tarunraj Singh, and Rahul Rai. "Pareto Front Identification via Objective Vector Jacobian Matrix Singularity." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12271.
Full textCinquemani, Simone, Hermes Giberti, and Giovanni Legnani. "The Generalized Jacobian Matrix and the Manipulators Kinetostatic Properties." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24919.
Full textReports on the topic "Jacobian matrix"
Eydenberg, Michael, Kanad Khanna, and Ryan Custer. Effects of Jacobian Matrix Regularization on the Detectability of Adversarial Samples. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763568.
Full text