Academic literature on the topic 'Jacobson radical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jacobson radical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jacobson radical"
KOSLER, KARL A. "ON SYMMETRIC RADICALS OVER FULLY SEMIPRIMARY NOETHERIAN RINGS." Journal of Algebra and Its Applications 02, no. 03 (September 2003): 351–64. http://dx.doi.org/10.1142/s021949880300057x.
Full textIlić-Georgijević, Emil. "On graded special radicals of graded rings." Journal of Algebra and Its Applications 17, no. 06 (May 23, 2018): 1850109. http://dx.doi.org/10.1142/s0219498818501098.
Full textSMOKTUNOWICZ, AGATA. "A NOTE ON NIL AND JACOBSON RADICALS IN GRADED RINGS." Journal of Algebra and Its Applications 13, no. 04 (January 9, 2014): 1350121. http://dx.doi.org/10.1142/s0219498813501211.
Full textGodloza, L., N. J. Groenewald, and W. A. Olivier. "On Jacobson Near-rings and Special Radicals." Algebra Colloquium 14, no. 01 (March 2007): 1–14. http://dx.doi.org/10.1142/s1005386707000028.
Full textKELAREV, A. V. "ON THE STRUCTURE OF INCIDENCE RINGS OF GROUP AUTOMATA." International Journal of Algebra and Computation 14, no. 04 (August 2004): 505–11. http://dx.doi.org/10.1142/s0218196704001888.
Full textRao, Ravi Srinivasa, K. Siva Prasad, and T. Srinivas. "Kurosh-Amitsur Right Jacobson Radical of Type 0 for Right Near-Rings." International Journal of Mathematics and Mathematical Sciences 2008 (2008): 1–6. http://dx.doi.org/10.1155/2008/741609.
Full textMunn, W. D. "The Jacobson radical of a band ring." Mathematical Proceedings of the Cambridge Philosophical Society 105, no. 2 (March 1989): 277–83. http://dx.doi.org/10.1017/s0305004100067761.
Full textBehr, Erazm J. "Jacobson radical of filtered algebras." Proceedings of the American Mathematical Society 98, no. 4 (April 1, 1986): 545. http://dx.doi.org/10.1090/s0002-9939-1986-0861746-7.
Full textNajaryan, N. G. "HOMOGENEOUS IDEALS AND JACOBSON RADICAL." Proceedings of the YSU A: Physical and Mathematical Sciences 51, no. 2 (243) (June 15, 2017): 193–95. http://dx.doi.org/10.46991/pysu:a/2017.51.2.193.
Full textOlson, D. M., and R. Lidl. "A uniformly strongly prime radical." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 43, no. 1 (August 1987): 95–102. http://dx.doi.org/10.1017/s1446788700029013.
Full textDissertations / Theses on the topic "Jacobson radical"
Della, Flora Saradia Sturza. "Sobre ações parciais torcidas de grupos e o produto cruzado parcial." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/54740.
Full textIn this work we consider twisted partial actions of a group G on a ring A. Firstly we study twisted partial actions with enveloping action. Next we assume that A is semiprime. In this case we extend the twisted partial action to the maximal left rings of quotients of A. Using this we find necessary and suficient conditions for the partial crossed product A ∗α G to be a semiprime Goldie ring. Finally we introduce the concept of the twisted partial action X -outer and study some properties that transfer from A to A ∗α G when the action is of this type.
Filho, Gilson Reis dos Santos. "O radical de Jacobson de anéis de polinômios diferenciais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05102015-161321/.
Full textThe aim of this work is to study the Jacobson radical of differential polynomial rings. We show a result of M. Ferrero, K. Kishimoto, K. Motose, which shows that in general, the radical of a differential polynomial ring is a differential polynomial ring over some ideal of the ring of coefficients. Assuming that the ring of coefficients satisfies a polynomial identity, we show following B. Madill that this ideal is nil. If the ring of coefficients is additionally locally nilpotent, following J. Bell, B. Madill, F. Shinko, we show that the differential polynomial ring is locally nilpotent. Still following J. Bell et al, if the ring of coefficients is an algebra over a field of zero characteristic and this algebra satisfies a polynomial identity, we show that the nil ideal is the Köthe radical. For the proofs, we cover the preliminary topics necessary for understanding the statements: nil radical, Levitzki radical, Baer radical, Jacobson radical and its properties, PI-rings, central polynomials, Kaplanskys theorem.
Williams, Jessica Lynn. "A ring theoretic approach to radicals of extensions." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1803.
Full textMorgado, Andrea. "Sobre os teoremas de dualidade de Cohen e Montgomery." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/29964.
Full textIn this work, we will present the Cohen and Montgomery's Duality Theorems, [4]. We also discuss the construction of a Morita context to an algebra graded by a nite group. As an application of the results developed in the text, we studied the relations between the Jacobson radical and the graded Jacobson radical of graded algebras, presenting to Cohen and Montgomery's solution for a Bergman's conjecture.
Velasco, Ulyses. "SIMPLE AND SEMI-SIMPLE ARTINIAN RINGS." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/533.
Full textCiocanea, teodorescu Iuliana. "Algorithms for finite rings." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0121/document.
Full textIn this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis concerns the module isomorphism problem: we describe two distinct algorithms that, given a finite ring R and two finite R-modules M and N, determine whether M and N are isomorphic. If they are, the algorithms exhibit such a isomorphism. In addition, we show how to compute a set of generators of minimal cardinality for a given module, and how to construct projective covers and injective hulls. We also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of surjective module homomorphisms between two finite modules, one of which is projective. As a negative result, we show that the problem of testing for existence of injective module homomorphisms between two finite modules, one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the corresponding quotient ring is \almost" semisimple. The notion we use to approximate semisimplicity is that of separability
Gardner, Kai. "Into the Fray : Norman Jacobson, the Free Speech Movement and the Clash of Commitments." Oberlin College Honors Theses / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1432128501.
Full textBORGES, Alex Ramos. "Identidades polinomiais graduadas de matrizes triangulares." Universidade Federal de Campina Grande, 2012. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1360.
Full textMade available in DSpace on 2018-08-06T14:53:31Z (GMT). No. of bitstreams: 1 ALEX RAMOS BORGES - DISSERTAÇÃO PPGMAT 2012..pdf: 550720 bytes, checksum: cd1d40089c6d522f3d44501f683dc900 (MD5) Previous issue date: 2012-12
Neste trabalho serão estudadas as graduações e identidades polinomiais graduadas da álgebra Un(K) das matrizes triangulares superiores n×n sobre um corpo K, o qual será sempre in nito. Primeiramente, será estudado o caso n = 2, para o qual será mostrado que existe apenas uma graduação não trivial e serão descritos as identidades, as codimensões e os cocaracteres graduados. Para o caso n qualquer, serão estudadas as identidades e codimensões graduadas, considerando-se a Zn-graduação natural de Un(K). Finalmente, será apresentada uma classi cação das graduações de Un(K) por um grupo qualquer.
In this work we study the gradings and the graded polynomial identities of the upper n × n triangular matrices algebra Un(K) over a eld K, which is always in nity. The case n = 2 will be rstly studied, for which will be shown that there is only one nontrivial grading and we shall describe the graded identities, codimensions and cocharacters. For the general n case, we shall study graded identities and codimensions, considering the natural Zn-grading of Un(K). Finally, we will present a classi cation of the gradings of Un(K) by any group.
ARAÚJO, Laise Dias Alves. "Identidades polinomiais para álgebras e matrizes triangulares superiores em blocos." Universidade Federal de Campina Grande, 2017. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1412.
Full textMade available in DSpace on 2018-08-13T14:12:26Z (GMT). No. of bitstreams: 1 LAISE DIAS ALVES ARAÚJO - DISSERTAÇÃO PPGMAT 2017..pdf: 818445 bytes, checksum: 666322e4502e880db6af0ea641df08f7 (MD5) Previous issue date: 2017-06
Capes
Nesta dissertação estudamos as graduações elementares (ou boas graduações) e as identidades polinomiais graduadas correspondentes em álgebras de matrizes triangulares superiores em blocos. Uma graduação elementar por um grupo G na álgebra A = UT(α1, α2, ..., αr) de matrizes triangulares superiores em blocos é determinada por uma n-upla em Gn, onde n = α1+· · ·+αr. Mostraremos que as graduações elementares em A determinadas por duas n-uplas em Gnsão isomorfas se, e somente se, as n-uplas estão na mesma órbita da bi-ação canônica em Gn com o grupo Sα1 × · · · × Sαr agindo à esquerda e G à direita. Em seguida utilizamos estes resultados para mostrar que, sob certas hipóteses (por exemplo, se o grupo G tem ordem prima), duas álgebras de matrizes triangulares superiores em blocos, graduadas pelo grupo G, satisfazem as mesmas identidades graduadas se, e somente se, são isomorfas (como álgebras graduadas).
In this dissertation we study elementary (or good) gradings in upper block triangular matrix algebras and the corresponding graded polynomial identities. An elementary grading by a group G on the algebra A = UT(α1, α2, ..., αr) of upper block triangular matrices is determined by an n-tuple in Gn, where n = α1 + · · · + αr. It will be proved that the elementary gradings on A determined by two n-tuples in Gn are isomorphic if and only if the n-tuples are in the same orbit in the canonical bi-action on Gn with the group Sα1 × · · · × Sαr acting on the left and the group G acting on the right. These results will be used to prove that under suitable hypothesis (for example if the group G has prime order) two upper block triangular matrix algebras, graded by the group G, satisfy the same graded identities if and only if they are isomorphic (as graded algebras).
Matos, Márcia Graci de Oliveira. "A estrutura do grupo adjunto e a propriedade do normalizador." Instituto de Matemática. Departamento de Matemática, 2016. http://repositorio.ufba.br/ri/handle/ri/22836.
Full textApproved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-06-07T11:05:21Z (GMT) No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5)
Made available in DSpace on 2017-06-07T11:05:21Z (GMT). No. of bitstreams: 1 Tese_Marcia_Graci_versao_final.pdf: 1885611 bytes, checksum: f7ea36e1d86a3f0ae4ecc282f7faf2ea (MD5)
Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor).
Books on the topic "Jacobson radical"
Karpilovsky, Gregory. The Jacobson radical of classical rings. Harlow, Essex, England: Longman Scientific & Technical, 1991.
Find full textThe Jacobson Radical of Group Algebras. Elsevier, 1987. http://dx.doi.org/10.1016/s0304-0208(08)x7052-5.
Full textBook chapters on the topic "Jacobson radical"
Farb, Benson, and R. Keith Dennis. "The Jacobson Radical." In Graduate Texts in Mathematics, 57–79. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4612-0889-1_3.
Full textLam, T. Y. "Jacobson Radical Theory." In Graduate Texts in Mathematics, 51–105. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0406-7_2.
Full textLam, T. Y. "Jacobson Radical Theory." In Exercises in Classical Ring Theory, 35–68. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-3987-9_2.
Full textLam, T. Y. "Jacobson Radical Theory." In Graduate Texts in Mathematics, 48–100. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4419-8616-0_2.
Full textKrylov, Piotr A., Alexander V. Mikhalev, and Askar A. Tuganbaev. "The Jacobson Radical of the Endomorphism Ring." In Algebras and Applications, 135–80. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0345-1_4.
Full textGateva-Ivanova, Tatiana. "Algorithmic determination of the jacobson radical of monomial algebras." In Lecture Notes in Computer Science, 355–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51517-8_139.
Full textSmoktunowicz, Agata. "R[x, y] is Brown-McCoy Radical if R[x] is Jacobson Radical." In Proceedings of the Third International Algebra Conference, 235–40. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0337-6_11.
Full textWilliamson, Arthur. "Radical Britain: David Hume of Godscroft and the Challenge to the Jacobean British Vision." In The Accession of James I, 48–68. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230501584_4.
Full textFlagg, Mary. "The Jacobson Radical’s Role in Isomorphism Theorems for p-Adic Modules Extends to Topological Isomorphism." In Groups, Modules, and Model Theory - Surveys and Recent Developments, 285–300. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51718-6_14.
Full textFaith, Carl. "Introduction to ring theory: Schur’s Lemma and semisimple rings, prime and primitive rings, Noetherian and Artinian modules, nil, prime and Jacobson radicals." In Rings and Things and a Fine Array of Twentieth Century Associative Algebra, 17–52. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/surv/065/02.
Full textConference papers on the topic "Jacobson radical"
K. Pushpalatha, S. Venu Madhava Sarma, P. S. Prema Kumar, M. Babu Prasad, and M. Nagarjuna. "A note on Jacobsan radicals in special Boolean like rings." In ESSENCE OF MATHEMATICS IN ENGINEERING APPLICATIONS: EMEA-2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0066297.
Full textK. Pushpalatha, S. Venu Madhava Sarma, P. S. Prema Kumar, M. Babu Prasad, and M. Nagarjuna. "A note on Jacobsan radicals in special Boolean like rings." In ESSENCE OF MATHEMATICS IN ENGINEERING APPLICATIONS: EMEA-2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0066297.
Full textSui, Wenbo, and Carrie M. Hall. "SCR Control System Design Based on On-Line Radial Basis Function and Backpropagation Neural Networks." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5095.
Full textStrömberg, Niclas. "Reliability Based Design Optimization by Using a SLP Approach and Radial Basis Function Networks." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59522.
Full textGan, Dongming, Jian S. Dai, Jorge Dias, and Lakmal D. Seneviratne. "Controllable Rotation Workspace of a Metamorphic Parallel Mechanism With Reconfigurable Universal Joints." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12462.
Full textJeon, Soo. "Singularity Tolerant Robotic Manipulation for Autonomous Field Tracking in an Unknown Environment." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28793.
Full text