To see the other types of publications on this topic, follow the link: Jama ´a.

Journal articles on the topic 'Jama ´a'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Jama ´a.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stepišnik, Uroš, Mateja Ferk, Blaž Kodelja, Boštjan Burger, Maja Abramović, and Simona Peterca. "Brezstropa jama v Podbojevem lazu, Rakov Škocjan." Dela, no. 31 (December 1, 2009): 37–53. http://dx.doi.org/10.4312/dela.31.37-53.

Full text
Abstract:
Predstavljena je brezstropa jama v Podbojevem lazu, v severozahodnem delu Rakovega Škocjana. Opisane so morfometrične in morfogenetske značilnosti več odsekov brezstrope jame in njene okolice. Brezstropa jama se je razvila iz epifreatičnega jamskega sistema, ki je deloval kot odtočni sistem iz doline Raka. Na podlagi podrobne morfometrične analize pobočij je bilo ugotovljeno, da brezstropa jama ni nastala sočasno. Zaradi neuravnanega površja je bil jamski strop denudiran postopoma.
APA, Harvard, Vancouver, ISO, and other styles
2

Radulovic, Visnja, Mark Van Der Garde, Valgardur Sigurdsson, Alya Zriwil, Svetlana Soboleva, Ewa Sitnicka Quinn, Shin Kaneko, and Kenichi Miharada. "Junctional Adhesion Molecule 2 Intensifies T Lymphopoiesis of Hematopoietic Stem Cells By Facilitating Notch/Delta Signaling." Blood 130, Suppl_1 (December 7, 2017): 635. http://dx.doi.org/10.1182/blood.v130.suppl_1.635.635.

Full text
Abstract:
Abstract Phenotypically described hematopoietic stem cells (HSCs) represent a functionally heterogeneous pool of primitive cells with conceivable potential to replenish and maintain the whole hematopoietic system. The diverse lineage potential of HSCs is supposed to play a significant role in the response to different kinds of hematopoietic stress. Since subcategorization of HSCs biased towards specific lineage(s) highly relies on the retrospective information, e.g. transplantation assay, exploring additional markers will allow us to understand further molecular mechanisms of HSC regulation such as activation and lineage choice but also the degree of correlation between them. Here, we show that the cell surface protein Junctional adhesion molecule 2 (Jam2) serves as an amplifier of the Notch/Delta signal thereby representing the higher T cell potential of HSCs. Flow cytometry analyses revealed that a subset of CD150+CD48-KSL cells in mouse bone marrow (BM) were positive for Jam2 (Jam2+HSC, 36.6 ±13.0%), while other Jam family member, Jam1 (F11r), was expressed on all HSCs and Jam3 was not detected. Transplantation assay using 30 Jam2+ or Jam2-HSCs revealed that Jam2+HSCs reconstituted lethally irradiated mice more efficiently than Jam2-HSCs (77.5 ±15.9 and 51.7 ±29.3% in peripheral blood, respectively). Lineage analyses revealed that Jam2+HSCs have a greater potential in lymphoid cell reconstitution, particularly T cells, whereas the chimerism in myeloid cells was not significantly different from Jam2-HSCs. This tendency of higher contribution to the T cell development was even more pronounced in the secondary transplantation experiments, where the contribution of Jam2+HSCs in T cells was close to 100%. Of note, most of Jam2+HSCs were in a dormant state, suggesting that the T cell potential of Jam2+HSCs is independent of the cell cycle progression. Jam2 has been reported to mediate the Notch signaling through an interaction with Jam1 (Kobayashi et al., Nature, 2014). In addition, Jam2+HSCs express Notch1 at a higher level than Jam2-HSCs (23.6 ±6.7 and 9.05 ±5.8%, respectively). We therefore analyzed the functional role of Jam2 in the Notch/Delta-oriented T cell production using a competitive feeder-free T cell culture system. At a low concentration of DLL1, that is insufficient to promote T cell production by itself, Jam2+HSCs effectively produced T cell lineages only in the presence of recombinant Jam1 protein, but not Jam2 or Jam3. In contrast, Jam2+HSCs did not require Jam1 protein with a higher concentration of DLL1. These differences were not observed with Jam2-HSCs, indicating that Jam2/Jam1 interaction amplifies Notch signal transduction and is crucial for the subsequent T cell specification of Jam2+HSCs. To elucidate the molecular signature of Jam2+HSCs, gene expression profiling was performed using a microarray analysis. Gene set enrichment analysis (GSEA) observed that Jam2+HSCs were significantly enriched for common lymphoid progenitor (CLP) and early T cell gene expression. Of note, Jam2+HSCs were also enriched for E2F target genes, G2M checkpoint genes and glycolysis related genes, which potentially explains the reason why Jam2+HSCs display a bivalent phenotype: being more dormant compared to Jam2-HSCs at the steady state but at the same time having the capacity to reconstitute more actively upon engraftment. Since Jam2 positivity correlates to T cell potential, we asked if altered T lymphopoietic environment affects the proportion of Jam2+HSCs. In vivo T cell depletion resulted in significantly higher frequency of Jam2+HSCs but not upon other stress inducers, such as 5-FU treatment, suggesting that the increase in Jam2+HSC pool was specifically due to the T cell deficiency. These findings indicate that the lack of T cells, which also means a requirement for immediate T cell replenishment, leads to an increase of Jam2+HSC fraction. Our findings suggest that Jam2 is the key protein that controls T lymphopoiesis by enhancing the Notch/Delta signal transduction via interaction with Jam1. It also means that the lineage balance particularly towards T lymphopoiesis might be regulated at a higher stage of hematopoietic hierarchy than currently understood. Thus, Jam2 is a new marker representing the T lymphocyte potential of HSCs, as the frequency of Jam2+HSCs sensitively reflects the state of the T cell environment. Disclosures No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
3

Grlj, Aleš, and Dejan Grigillo. "Uporaba digitalnega modela višin in satelitskega posnetka RapidEye za zaznavanje kraških kotanj in brezstropih jam Podgorskega krasa." Dela, no. 42 (December 1, 2014): 129–47. http://dx.doi.org/10.4312/dela.42.129-147.

Full text
Abstract:
Speleogeneza je proces nastajanja, razvoja in izginjanja jam. Zaključni stadij razvoja jame imenujemo brezstropa jama. Proučevanje le-teh nam lahko pomaga pri razumevanju krasa in kraških pojavov. Ker so brezstrope jame ali kotanje na površju ali le zaplate nekraških sedimentov z bujnejšim rastjem, v članku preučujemo možnosti kabinetnega prepoznavanja teh pojavov na podlagi njihovih morfometričnih lastnosti in spektralnih lastnosti vegetacije, ki jih prerašča. Raziskava je osredotočena na širše območje Podgorskega krasa v jugozahodni Sloveniji.
APA, Harvard, Vancouver, ISO, and other styles
4

Grlj, Aleš, and Dejan Grigillo. "Uporaba digitalnega modela višin in satelitskega posnetka RapidEye za zaznavanje kraških kotanj in brezstropih jam Podgorskega krasa." Dela, no. 42 (December 1, 2014): 129–47. http://dx.doi.org/10.4312/dela.42.1.129-147.

Full text
Abstract:
Speleogeneza je proces nastajanja, razvoja in izginjanja jam. Zaključni stadij razvoja jame imenujemo brezstropa jama. Proučevanje le-teh nam lahko pomaga pri razumevanju krasa in kraških pojavov. Ker so brezstrope jame ali kotanje na površju ali le zaplate nekraških sedimentov z bujnejšim rastjem, v članku preučujemo možnosti kabinetnega prepoznavanja teh pojavov na podlagi njihovih morfometričnih lastnosti in spektralnih lastnosti vegetacije, ki jih prerašča. Raziskava je osredotočena na širše območje Podgorskega krasa v jugozahodni Sloveniji.
APA, Harvard, Vancouver, ISO, and other styles
5

Buzjak, Nenad. "Speleološke pojave u Parku prirode "Žumberak – Samoborsko gorje"." Geoadria 7, no. 1 (January 11, 2017): 31. http://dx.doi.org/10.15291/geoadria.64.

Full text
Abstract:
Članak daje pregled dijela speleoloških istraživanja na teritoriju Parka prirode "Žumberak-Samoborsko gorje". Uz pregled osnovnih značajki krškog reljefa i hidrografije, obrađene su značajke 51 speleološke pojave (spilje i jame). Prema nagibu kanal određene su vrste speleoloških pojava, zatim morfološki tipovi, analizirane dimenzije (duljina i dubina), hidrološke značajke, hidrogeološka uloga, vrste sedimenata, te utjecaj geološke građe terena na značajke istraženih spilja i jama.
APA, Harvard, Vancouver, ISO, and other styles
6

Buzjak, Nenad. "Speleological Features of "Žumberak – Samoborsko gorje" Nature Park." Geoadria 7, no. 1 (January 11, 2017): 31–49. http://dx.doi.org/10.15291/geoadria.65.

Full text
Abstract:
Članak daje pregled dijela speleoloških istraživanja na teritoriju Parka prirode "Žumberak-Samoborsko gorje". Uz pregled osnovnih značajki krškog reljefa i hidrografije, obrađene su značajke 51 speleološke pojave (spilje i jame). Prema nagibu kanal određene su vrste speleoloških pojava, zatim morfološki tipovi, analizirane dimenzije (duljina i dubina), hidrološke značajke, hidrogeološka uloga, vrste sedimenata, te utjecaj geološke građe terena na značajke istraženih spilja i jama.
APA, Harvard, Vancouver, ISO, and other styles
7

Haüselmann, Philipp, and Paola Tognini. "Kaltbach Cave (Siebenhengste, Switzerland): Phantom of the Sandstone?" Acta Carsologica 34, no. 2 (April 6, 2016). http://dx.doi.org/10.3986/ac.v34i2.265.

Full text
Abstract:
Jama Kaltbach je razvita v Hochgantskem eocenskem peščenjaku na območju Siebenghengste v Švici. Rezultat ponovne izmere jame je precej večja dolžina, nov načrt jame in številna opažanja, ki kažejo na to, da jama ni nastala z »normalno speleogenezo«, ampak je t.i. fantomska jama. Fantomske jame nastajajo pri delnem preperevanju nečistega apnenca v toplih klimah, v pogojih nizkega hidravličnega gradienta. Ob povečanju gradienta, voda izpere netopni preostanek, pri čemer nastane jama. Članek obravnava geomorfološke značilnosti jam, ki nam omogočajo prepoznavati fantomske jame. Kaltbach cave is developed within the Eocene Hohgant sandstone in the Siebenhengste area in Switzerland. A remapping project of the cave resulted in a huge increase in length. It also produced a complete, updated map and longitudinal section. The cave’s morphology does not fitwiththe“normal”speleogenesis:itisaso-calledphantom cave. Phantoms are created by differential weathering of impure limestone under a preferably warm climate and a very low hydrologic gradient. Once the gradient steepens, the undissolved residual sediments are piped out; the “cave” manifests itself. The paper discusses the geomorphological features that permit to recognize the phantom caves.
APA, Harvard, Vancouver, ISO, and other styles
8

Knez, Martin, and Tadej Slabe. "Lithostratigraphic Characteristics of the Intermittent Pivka Lakes Region and Matijeva Jama Cave Estavelle." Acta Carsologica 34, no. 3 (April 6, 2016). http://dx.doi.org/10.3986/ac.v34i3.260.

Full text
Abstract:
V prispevku opisujeva tipične značilnosti kamnin, ki jih zasledimo na področju presihajočih Pivških jezer. V zgornje krednih apnencih sta se oblikovali dve značilni kraški jami: Matijeva jama, ki se danes kaže kot estavela in Trnska jama s številnimi znaki pogostega in izdatnega nihanja gladine podzemeljske vode. Predstavljava nekatere nove izsledke raziskav.This article describes the typical characteristics of rock found in the area of the intermittent Pivka lakes. Two characteristic karstic caves formed in Upper Cretaceous limestone: Matijeva jama, which appears as an estavelle today, and Trnska jama, vvith several old and recent signs of frequent and plentiful fluctuation in groundwater level. Several new research results are presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Knez, Martin, Tadej Slabe, and Stanka Šebela. "Smoganica – a Cave Developed in Upper Cretaceous Breccia." Acta Carsologica 34, no. 2 (April 6, 2016). http://dx.doi.org/10.3986/ac.v34i2.268.

Full text
Abstract:
Na planoti Banjšice (SZ Slovenija) je najdaljša izvirna jama Smoganica, dolga 492 m. Jama (na nadmorski višini 505 m) leži na jugozahodnem pobočju Čukle (770 m) vzhodno od reke Soče (153 m nad morjem). Smoganica se je razvila v apnenčevi breči, ki je tu debela 10 m in je del zgornjekrednih flišnih plasti. V okolici jame so zeleni laporji kot vključki v breči ali pa je breča vključena v plasti zelenega laporja. Klasti v debelozrnati breči, v kateri je tudi jama, merijo od nekaj cm do več dm v premeru. Klasti večinoma izvirajo iz mlajših rudistnih apnencev, spodnje in zgornje krede ter jurskih mikritnih in oolitnih apnencev. Jama Smoganica leži okrog 2 km južno od Idrijskega preloma in okrog 200 m severno od Kobariškega preloma. V jami zasledimo dve glavni razpoklinski smeri: N30-45°E in N120-135°E. Smoganica se je oblikovala kot sistem manjših rovov, ki so se razvili znotraj breče v vseh smereh. Jama je nastala v freatičnih razmerah. Kasneje je bila v celoti zapolnjena s sedimenti, nad katerimi so nastale nadsedimentne skalne oblike. Sedimenti so bili nato iz jame odnešeni. Današnji vodni tok oblikuje dno jamskih rovov. Višje vode oblikujejo fasete in draslje, nižje pa talne žlebove. Jamo lahko opredelimo kot poligenetsko, saj je njene dele že povsem preoblikovala voda, ki prenika s površja in polzi po jamskih stenah. On the Banjšice plateau (NW Slovenia) the longest spring cave is 492 m long Smoganica. The cave (505 m above sea level) is situated on the SW slope of Čukla (770 m) E from the Soča river (153 m above the sea level). Smoganica is developed in limestone breccia, which is 10 m thick and belongs to the Upper Cretaceous flyschrocks. On the territory around the cave, the green marls are included in breccias or breccias are included into the green marls. Clasts in coarse-grained breccia, in which the cave is located, vary from some cm to several dm in diameter. Clasts are mostly deriving from younger rudist limestones, Lower and Upper Cretaceous and Jurassic micritic and oolitic limestones. Smoganica is situated about 2 km south from Idrija fault and about 200 m north from Kobarid fault. There are two principal fissure orientations in the cave, N30-45ºE and N120-135ºE. Smoganica was formed from the system of smaller passages that have been developed inside the breccia in 3D. The cave was formed in phreatic conditions, later it was completely filled with cave sediments.In the next stagethe above-sediment rock forms were developed. Cave sediments were later removed from the cave. Today the active water stream is cutting rock forms in the bottom of the cave passages. Higher water quantities are forming scallops and potholes and lower quantities floorchannels. Smoganica can be described as polygenetic cave because the percolating water is reshaping the passages.
APA, Harvard, Vancouver, ISO, and other styles
10

Kempe, Stephan. "The Inscriptions of the Tartarus Panel and the 1833 Fercher-survey, Postojnska jama." Acta Carsologica 34, no. 1 (May 13, 2016). http://dx.doi.org/10.3986/ac.v34i1.287.

Full text
Abstract:
The history of the discovery of the main parts of Postojnska jama that began in 1818 is not well documented. The article reports about the most interesting inscriptions of the “Idrianer” left on February 7th, 1833, including Johann Fercher, Aloys Urbas, Valentin Tracha, and Johann Wruss near the end of the then known main passage. Fercher was a mine supervisor at Idria. He conducted the first thorough survey of the cave, published first by Schaffenrath (1834). In the archives of Postojnska jama, kept by the Karst Research Institute ZRC SAZU in Postojna four documents survive illustrating the background of this survey. These documents, written in the 19th century German Current handwriting are transcribed here for the first time. They not only list the participants of the survey (which also included surveyor Michael Glantschnigg and coachman Johann Leskovitz) but also report costs. Zgodovina odkrivanja glavnih delov Postojnske jame, ki so se začela 1818, še ni podrobno obdelana. Tukaj poročam o najzanimivejših podpisih v Tartarju blizu konca takrat znanega rova, kjer so se podpisali tako imenovani »Idrijci« 7. februarja 1833: Johann Fercher, Aloys Urbas, Valentin Tracha in Johann Wruss. Fercher je bil rudarski nadzornik v Idriji. Opravil je prve natančne meritve jame, ki jih je objavil Schaffenrath 1834. V arhivu Postojnske jame, ki ga hrani Inštitut za raziskovanje krasa ZRC SAZU, so ohranjeni štirje dokumenti, ki osvetljujejo ozadje teh meritev. Ti dokumenti, napisani v gotici in nemščini 19.stoletja, so tukaj prvič transkribirani. Ne vsebujejo le seznama merilcev (kjer sta omenjena tudi merilec Michael Glantschnigg in kočijaž Johann Leskovitz), ampak tudi pregled stroškov.
APA, Harvard, Vancouver, ISO, and other styles
11

"JAMA." JAMA 325, no. 1 (January 5, 2021): 9. http://dx.doi.org/10.1001/jama.2020.17723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

"JAMA." JAMA 310, no. 3 (July 17, 2013): 227. http://dx.doi.org/10.1001/jama.2013.5210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

"JAMA." JAMA 313, no. 15 (April 21, 2015): 1495. http://dx.doi.org/10.1001/jama.2014.11694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

"JAMA." JAMA 313, no. 22 (June 9, 2015): 2203. http://dx.doi.org/10.1001/jama.2014.11792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

"JAMA." JAMA 313, no. 12 (March 24, 2015): 1189. http://dx.doi.org/10.1001/jama.2014.11652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

"JAMA." JAMA 310, no. 4 (July 24, 2013): 347. http://dx.doi.org/10.1001/jama.2013.5223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

"JAMA." JAMA 313, no. 13 (April 7, 2015): 1295. http://dx.doi.org/10.1001/jama.2014.11666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

"JAMA." JAMA 310, no. 5 (August 7, 2013): 457. http://dx.doi.org/10.1001/jama.2013.5235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

"JAMA." JAMA 310, no. 13 (October 2, 2013): 1311. http://dx.doi.org/10.1001/jama.2013.5339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

"JAMA." JAMA 310, no. 14 (October 9, 2013): 1427. http://dx.doi.org/10.1001/jama.2013.5352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

"JAMA." JAMA 314, no. 13 (October 6, 2015): 1319. http://dx.doi.org/10.1001/jama.2014.12006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

"JAMA." JAMA 314, no. 21 (December 1, 2015): 2209. http://dx.doi.org/10.1001/jama.2014.12118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

"JAMA." JAMA 310, no. 19 (November 20, 2013): 2005. http://dx.doi.org/10.1001/jama.2013.5417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

"JAMA." JAMA 310, no. 21 (December 4, 2013): 2223. http://dx.doi.org/10.1001/jama.2013.5443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

"JAMA." JAMA 320, no. 15 (October 16, 2018): 1517. http://dx.doi.org/10.1001/jama.2017.12593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

"JAMA." JAMA 320, no. 16 (October 23, 2018): 1619. http://dx.doi.org/10.1001/jama.2017.12604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

"JAMA." JAMA 322, no. 18 (November 12, 2019): 1735. http://dx.doi.org/10.1001/jama.2018.15587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

"JAMA." JAMA 322, no. 19 (November 19, 2019): 1843. http://dx.doi.org/10.1001/jama.2018.15598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

"JAMA." JAMA 322, no. 20 (November 26, 2019): 1939. http://dx.doi.org/10.1001/jama.2018.15609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

"JAMA." JAMA 322, no. 21 (December 3, 2019): 2047. http://dx.doi.org/10.1001/jama.2018.15620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

"JAMA." JAMA 322, no. 22 (December 10, 2019): 2153. http://dx.doi.org/10.1001/jama.2018.15631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

"JAMA." JAMA 322, no. 23 (December 17, 2019): 2265. http://dx.doi.org/10.1001/jama.2018.15642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

"JAMA." JAMA 322, no. 24 (December 24, 2019): 2365. http://dx.doi.org/10.1001/jama.2018.15653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

"JAMA." JAMA 320, no. 12 (September 25, 2018): 1217. http://dx.doi.org/10.1001/jama.2017.12560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

"JAMA." JAMA 320, no. 13 (October 2, 2018): 1301. http://dx.doi.org/10.1001/jama.2017.12571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

"JAMA." JAMA 320, no. 14 (October 9, 2018): 1405. http://dx.doi.org/10.1001/jama.2017.12582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

"JAMA." JAMA 322, no. 8 (August 27, 2019): 707. http://dx.doi.org/10.1001/jama.2018.15477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

"JAMA." JAMA 322, no. 9 (September 3, 2019): 799. http://dx.doi.org/10.1001/jama.2018.15488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

"JAMA." JAMA 322, no. 10 (September 10, 2019): 907. http://dx.doi.org/10.1001/jama.2018.15499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

"JAMA." JAMA 322, no. 11 (September 17, 2019): 1027. http://dx.doi.org/10.1001/jama.2018.15510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

"JAMA." JAMA 322, no. 12 (September 24, 2019): 1125. http://dx.doi.org/10.1001/jama.2018.15521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

"JAMA." JAMA 322, no. 13 (October 1, 2019): 1229. http://dx.doi.org/10.1001/jama.2018.15532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

"JAMA." JAMA 322, no. 14 (October 8, 2019): 1333. http://dx.doi.org/10.1001/jama.2018.15543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

"JAMA." JAMA 322, no. 15 (October 15, 2019): 1431. http://dx.doi.org/10.1001/jama.2018.15554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

"JAMA." JAMA 322, no. 16 (October 22, 2019): 1531. http://dx.doi.org/10.1001/jama.2018.15565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

"JAMA." JAMA 322, no. 17 (November 5, 2019): 1629. http://dx.doi.org/10.1001/jama.2018.15576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

"JAMA." JAMA 319, no. 11 (March 20, 2018): 1073. http://dx.doi.org/10.1001/jama.2017.12285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

"JAMA." JAMA 319, no. 22 (June 12, 2018): 2253. http://dx.doi.org/10.1001/jama.2017.12406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

"JAMA." JAMA 319, no. 23 (June 19, 2018): 2353. http://dx.doi.org/10.1001/jama.2017.12417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

"JAMA." JAMA 319, no. 24 (June 26, 2018): 2457. http://dx.doi.org/10.1001/jama.2017.12428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography