Academic literature on the topic 'James Webb Space Telescope'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'James Webb Space Telescope.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "James Webb Space Telescope"
Sharma, Anand Kumar. "James Webb Space Telescope." Resonance 27, no. 8 (August 23, 2022): 1355–69. http://dx.doi.org/10.1007/s12045-022-1431-1.
Full textStockman, Hervey S. "James Webb Space Telescope." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 522–23. http://dx.doi.org/10.1017/s1743921307011660.
Full textGardner, Jonathan P., John C. Mather, Mark Clampin, Rene Doyon, Matthew A. Greenhouse, Heidi B. Hammel, John B. Hutchings, et al. "The James Webb Space Telescope." Space Science Reviews 123, no. 4 (November 1, 2006): 485–606. http://dx.doi.org/10.1007/s11214-006-8315-7.
Full textBanks, Michael. "NASA delays James Webb Space Telescope." Physics World 31, no. 5 (May 2018): 6. http://dx.doi.org/10.1088/2058-7058/31/5/9.
Full textClampin, Mark. "The James Webb Space Telescope (JWST)." Advances in Space Research 41, no. 12 (January 2008): 1983–91. http://dx.doi.org/10.1016/j.asr.2008.01.010.
Full textSabelhaus, Philip, and John Decker. "James Webb Space Telescope: Project Overview." IEEE Aerospace and Electronic Systems Magazine 22, no. 7 (July 2007): 3–13. http://dx.doi.org/10.1109/maes.2007.4285974.
Full textLightsey, Paul A. "James Webb Space Telescope: large deployable cryogenic telescope in space." Optical Engineering 51, no. 1 (February 3, 2012): 011003. http://dx.doi.org/10.1117/1.oe.51.1.011003.
Full textBanks, Michael. "NASA’s James Webb Space Telescope takes space ‘selfie’." Physics World 35, no. 3 (August 1, 2022): 13ii. http://dx.doi.org/10.1088/2058-7058/35/03/12.
Full textCastillo Rosales, Yvelice Soraya. "First James Webb Space Telescope´s images." Innovare: Revista de ciencia y tecnología 11, no. 2 (August 30, 2022): 111. http://dx.doi.org/10.5377/innovare.v11i2.14787.
Full textBanks, Michael. "Milestone reached for James Webb Space Telescope." Physics World 29, no. 3 (March 2016): 17. http://dx.doi.org/10.1088/2058-7058/29/3/19.
Full textDissertations / Theses on the topic "James Webb Space Telescope"
Sonneborn, G. "Imaging and spectroscopy with the James Webb Space Telescope." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1798/.
Full textNittler, Josefine. "Hunting for Dark Stars with the James Webb Space Telescope." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356206.
Full textDe första stjärnorna i universum antas ha bildats i minihalos med hög densitet av mörk materia omkring 200 miljoner år efter Big Bang. Om dessa stjärnor kunde dra till sig mörk materia under sitt bildande kan vissa av dem ha utvecklats till mörka stjärnor (s.k. dark stars) med mörk materia som energikälla. I detta arbete undersöks möjligheterna att upptäcka dem med det kommande James Webb Space Teleskopet (JWST) som planeras för uppskjutning år 2021. Med dark starmodeller genererade i Spolyar et al. (2009) och atmosfärspektra från Gustafsson et al. (2008) har spektralanalys utförts i MATLAB för att hitta vilka dark stars som går att urskilja från galaxer genererade i Zackrisson et al. (2017) vid z ≈ 7−11. Det visade sig att dark stars med låg temperatur (Teff ≤ 7800K) är urskiljbara och att de flesta av dessa dark stars, vid en förstoringsfaktor av µ ≈ 160−1000 vid användning av gravitationell linsning, är tillräckligt ljusstarka för att kunna detekteras. Jämfört med senare dark star-modeller skulle även Teff = 7800K DSs kunna detekteras utan användning av gravitaionell linsning. Sannolikheten att hitta en dark star är fortfarande väldigt liten på grund av dess förmodade korta livstid. Resultaten av detta arbete hoppas kunna ge en bättre förståelse för egenskaperna hos mörka stjärnor samt öka sannolikheten för detektion med JWST.
Briggs, Michael. "Characterisation of the MIRI spectrometer, an instrument for the James Webb Space Telescope." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3979.
Full textGreene, Thomas P., Douglas M. Kelly, John Stansberry, Jarron Leisenring, Eiichi Egami, Everett Schlawin, Laurie Chu, Klaus W. Hodapp, and Marcia Rieke. "λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/626090.
Full textHjort, Adam. "Future directions in the study of Asymptotic Giant Branch Stars with the James Webb Space Telescope." Thesis, Uppsala universitet, Observationell astrofysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-303344.
Full textI den här studien har jag gjort fotometriska förutsägelser för asymptotis- ka jättegrensstjärnor (AGB-stjärnor) av C typ från Eriksson et al. (2014) modifierade för instrument ombord på James Webb Space Telescope (JWST) och Wide-field Infrared Survey Explorer (WISE). AGB-stjärnor bidrar kraftigt till det totala ljuset av stjärnor av intermediär ålder och är också en stor källa till metaller (speciellt kol) i galaxer. Studier av AGB stjärnor är viktiga av flera anledningar, däribland för att förstå den kemiska evolutionen och stoftcykler i galaxer. JWST är planerad att skjutas upp 2018 och fram till dess bör det vara en hög prioritet att förbereda observeringsstrategier. Med den fotometriska datan i den här studien hoppas vi att användare av JWST kommer kunna optimera sina observeringsstrategier av AGB-stjärnor och få ut så mycket som möjligt av sin obseravtionstid med teleskopet. Vi har testat metoden genom att titta på objekt från Whitelock et al. (2006) i WISE-katalogen och jämföra dem med de fotometriska resultaten baserade på modellerna från Eriksson et al. (2014). På detta sett har vi lyckats matcha 20 objekt med modeller. Den fotometriska datan går att ladda ner ifrån: http://www.astro.uu.se/AGBmodels/
Glauser, Adrian Michael. "The mid infrared instrument of the James Webb space telescope : the Swiss hardware contribution and preparatory studies of protoplanetary disks /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17978.
Full textHadj-Youcef, Mohamed Elamine. "Spatio spectral reconstruction from low resolution multispectral data : application to the Mid-Infrared instrument of the James Webb Space Telescope." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS326/document.
Full textThis thesis deals with an inverse problem in astronomy. The objective is to reconstruct a spatio-spectral object, having spatial and spectral distributions, from a set of low-resolution multispectral data taken by the imager MIRI (Mid-InfraRed Instrument), which is on board the next space telescope James Webb Space Telescope (JWST). The observed multispectral data suffers from a spatial blur that varies according to the wavelength due to the spatial convolution with a shift-variant optical response (PSF). In addition the multispectral data also suffers from severe spectral degradations because of the spectral filtering and the integration by the detector over broad bands. The reconstruction of the original object is an ill-posed problem because of the severe lack of spectral information in the multispectral dataset. The difficulty then arises in choosing a representation of the object that allows the reconstruction of this spectral information. A common model used so far considers a spectral shift-invariant PSF per band, which neglects the spectral variation of the PSF. This simplistic model is only suitable for instruments with a narrow spectral band, which is not the case for the imager of MIRI. Our approach consists of developing an inverse problem framework that is summarized in four steps: (1) designing an instrument model that reproduces the observed multispectral data, (2) proposing an adapted model to represent the sought object, (3) exploiting all multispectral dataset jointly, and finally (4) developing a reconstruction method based on regularization methods by enforcing prior information to the solution. The overall reconstruction results obtained on simulated data of the JWST/MIRI imager show a significant increase of spatial and spectral resolutions of the reconstructed object compared to conventional methods. The reconstructed object shows a clear denoising and deconvolution of the multispectral data. We obtained a relative error below 5% at 30 dB, and an execution time of 1 second for the l₂-norm algorithm and 20 seconds (with 50 iterations) for the l₂/l₁-norm algorithm. This is 10 times faster than the iterative solution computed by conjugate gradients
Laurent-Prost, Florence. "Etude et modélisation des performances de systèmes découpeurs d'images pour l'astronomie : application à l'instrumentation du «James Webb space» téléscope et du «Very large» téléscope." Saint-Etienne, 2006. http://www.theses.fr/2006STET4012.
Full textImage slicers systems are a new type of integral field spectrographs for astronomical instrumentation. This dissertation presents the study and modelization of the performance of such systems based on an optical design including a slicing mirror. The latter consists of a stacking of slices with spherical and tilted active optical surfaces. In view of instrumentation of JWST and VLT, this work describes optical design, manufacturing, assembling, component test results (shape, roughness, BRDF) and overall system performance (image quality, alignment) of two alternative technologies for image slicers. Proposed by Cybernetix, the first one uses individual optical components made of Zerodur, polished by classical method and assembled together by molecular adhesion. The second one involves monolithic or segmented optical elements made of metal and state-of-the-art diamond-turning machines. Then, we conclude on a comparison between these two different technologies, giving the most suitable solutions for astronomical instruments, either ground or spaceborne, and mono or multi channels
Jones, Scott Curtis, and University of Lethbridge Faculty of Arts and Science. "Astronomical submillimetre Fourier transform spectroscopy from the Herschel Space Observatory and the JCMT." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Physics & Astronomy, c2010, 2010. http://hdl.handle.net/10133/2486.
Full textxvii, 123 leaves : ill. (some col.) ; 29 cm
Fischer, Sebastian [Verfasser]. "The LRS double prism assembly to be flown on the James Webb Space Telescope and host galaxies of active galactic nuclei in the near infrared / vorgelegt von Sebastian Fischer." 2008. http://d-nb.info/992129273/34.
Full textBooks on the topic "James Webb Space Telescope"
Center, Goddard Space Flight. The James Webb Space Telescope science guide. Greenbelt, Md. (8800 Greenbelt Rd., Greenbelt 20771): National Aeronautics and Space Administration, Goddard Space Flight Center, 2011.
Find full textTielens, A. G. G. M., Christensen Lars Lindberg, Stiavelli Massimo, Thronson Harley A, and SpringerLink (Online service), eds. Astrophysics in the Next Decade: The James Webb Space Telescope and Concurrent Facilities. Dordrecht: Springer Netherlands, 2009.
Find full textUnited States. Government Accountability Office. NASA's James Webb Space Telescope: Knowledge-based acquisition approach key to addressing program challenges. Washington, D.C: U.S. Government Accountability Office, 2006.
Find full textUnited States. Congress. House. Committee on Science, Space, and Technology (2011). The next great observatory: Assessing the James Webb Space Telescope : hearing before the Committee on Science, Space, and Technology, House of Representatives, One Hundred Twelfth Congress, first session, Tuesday, December 6, 2011. Washington: U.S. Government Printing Office, 2011.
Find full textJames Webb Space Telescope: Project meeting commitments but current technical, cost, and schedule challenges could affect continued progress : report to congressional committees. [Washington, D.C.]: United States Government Accountability Office, 2014.
Find full textLambright, W. Henry. Powering Apollo: James E. Webb of NASA. Baltimore: The John Hopkins University Press, 1995.
Find full textBizony, Piers. The man who ran the moon: James E. Webb and the secret history of Project Apollo. New York, NY: Thunder's Mouth Press, 2007.
Find full textBizony, Piers. The man who ran the moon: James E. Webb and the secret history of Project Apollo. New York: Thunder's Mouth Press, 2006.
Find full textThe man who ran the moon: James Webb, JFK and the secret history of Project Apollo. Thriplow: Icon, 2007.
Find full textLINDA. NASA Logo James Webb Space Telescope the JWST. Independently Published, 2022.
Find full textBook chapters on the topic "James Webb Space Telescope"
Chen, James L., and Adam Chen. "HST and the James Webb Space Telescope." In The Patrick Moore Practical Astronomy Series, 219–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18872-0_10.
Full textBeichman, Charles A., and Thomas P. Greene. "Observing Exoplanets with the James Webb Space Telescope." In Handbook of Exoplanets, 1–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-30648-3_85-1.
Full textBeichman, Charles A., and Thomas P. Greene. "Observing Exoplanets with the James Webb Space Telescope." In Handbook of Exoplanets, 1283–308. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-55333-7_85.
Full textEnglish, Neil. "Looking to the Future: The James Webb Space Telescope." In Astronomers' Universe, 283–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27814-8_11.
Full textOsterholt, Douglas J., David Cloutier, Timothy Marinone, and Reem Hejal. "Modal Testing of James Webb Space Telescope (JWST) Optical Telescope Element (OTE)." In Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9, 103–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30087-0_10.
Full textRhee, George. "Tour de Force: The James Webb Telescope." In Astronomers' Universe, 251–65. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7813-3_12.
Full textLambright, W. Henry. "Leading NASA in Space Exploration: James E. Webb, Apollo, and Today." In Leadership and Discovery, 79–98. New York: Palgrave Macmillan US, 2009. http://dx.doi.org/10.1057/9780230101630_6.
Full text"James Webb Space Telescope." In Encyclopedia of Astrobiology, 1305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_100605.
Full text"James Webb Space Telescope." In Encyclopedia of Astrobiology, 878. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_2642.
Full textCottrell, Geoff. "9. The next telescopes." In Telescopes: A Very Short Introduction, 122–38. Oxford University Press, 2016. http://dx.doi.org/10.1093/actrade/9780198745860.003.0009.
Full textConference papers on the topic "James Webb Space Telescope"
Mather, John. "James Webb Space Telescope." In Space 2004 Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5985.
Full textBeckwith, Steven V. W. "Space telescopes after the James Webb Space Telescope." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Howard A. MacEwen. SPIE, 2004. http://dx.doi.org/10.1117/12.512725.
Full textMather, John C. "The James Webb Space Telescope." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.thjj3.
Full textGardner, Jon. "The James Webb Space Telescope." In From Planets to Dark Energy: the Modern Radio Universe. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.052.0005.
Full textClampin, Mark. "The James Webb Space Telescope." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.stuc3.
Full textMather, John. "The James Webb Space Telescope." In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/aoms.2015.jt1a.1.
Full textMather, John C., Daniel J. Whalen, Volker Bromm, and Naoki Yoshida. "The James Webb Space Telescope Mission." In THE FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE. AIP, 2010. http://dx.doi.org/10.1063/1.3518853.
Full textJones, Gregory S., and James M. Marsh. "James Webb Space Telescope Integration & Test." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5251.
Full textBack, Jason, Branwen Schuettpelz, Anthony Ewing, and Greg Laue. "James Webb Space Telescope Sunshield Membrane Assembly." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2156.
Full textBalzano, Vicki, and John Isaacs. "Event-Driven James Webb Space Telescope Operations." In SpaceOps 2006 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5747.
Full text