Academic literature on the topic 'James Webb Space Telescope'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'James Webb Space Telescope.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "James Webb Space Telescope"

1

Sharma, Anand Kumar. "James Webb Space Telescope." Resonance 27, no. 8 (August 23, 2022): 1355–69. http://dx.doi.org/10.1007/s12045-022-1431-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stockman, Hervey S. "James Webb Space Telescope." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 522–23. http://dx.doi.org/10.1017/s1743921307011660.

Full text
Abstract:
AbstractThe James Webb Space Telescope (JWST) is the scientific successor to the Hubble and Spitzer missions. Its wavelength range (1 - 28μm) and sensitivity (1 nJy - 1 μJy) complement the submillimeter facilities of the coming decade, Herschel and ALMA. The JWST development is on schedule for a June 2013 launch to L2 on an Ariane 5.
APA, Harvard, Vancouver, ISO, and other styles
3

Gardner, Jonathan P., John C. Mather, Mark Clampin, Rene Doyon, Matthew A. Greenhouse, Heidi B. Hammel, John B. Hutchings, et al. "The James Webb Space Telescope." Space Science Reviews 123, no. 4 (November 1, 2006): 485–606. http://dx.doi.org/10.1007/s11214-006-8315-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banks, Michael. "NASA delays James Webb Space Telescope." Physics World 31, no. 5 (May 2018): 6. http://dx.doi.org/10.1088/2058-7058/31/5/9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clampin, Mark. "The James Webb Space Telescope (JWST)." Advances in Space Research 41, no. 12 (January 2008): 1983–91. http://dx.doi.org/10.1016/j.asr.2008.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabelhaus, Philip, and John Decker. "James Webb Space Telescope: Project Overview." IEEE Aerospace and Electronic Systems Magazine 22, no. 7 (July 2007): 3–13. http://dx.doi.org/10.1109/maes.2007.4285974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lightsey, Paul A. "James Webb Space Telescope: large deployable cryogenic telescope in space." Optical Engineering 51, no. 1 (February 3, 2012): 011003. http://dx.doi.org/10.1117/1.oe.51.1.011003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banks, Michael. "NASA’s James Webb Space Telescope takes space ‘selfie’." Physics World 35, no. 3 (August 1, 2022): 13ii. http://dx.doi.org/10.1088/2058-7058/35/03/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Castillo Rosales, Yvelice Soraya. "First James Webb Space Telescope´s images." Innovare: Revista de ciencia y tecnología 11, no. 2 (August 30, 2022): 111. http://dx.doi.org/10.5377/innovare.v11i2.14787.

Full text
Abstract:
From left to right and from top to bottom: 1. The Stephan's Quintet (interacting galaxies' group), 40 million and 290 million light-years away; 2. The Cartwheel Galaxy, a merger of galaxies of 144,300 light-years across, 500 million light-years away; 3. The spectrum of the exoplanet WASP-96b (1,150 light-years away), showing evaporated water; 4. James Webb telescope in its clean room; 5. The South Ring Nebula, 2,500 light-years away (12 light-years across); 6. Galactic cluster in the early universe SMACS 07323, 4,600,000,000 light-years away; 7. The star formation region NGC 3324 (Gabriela Mistral) in the Carina Nebula (NGC3372), 7,600 light-years away.
APA, Harvard, Vancouver, ISO, and other styles
10

Banks, Michael. "Milestone reached for James Webb Space Telescope." Physics World 29, no. 3 (March 2016): 17. http://dx.doi.org/10.1088/2058-7058/29/3/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "James Webb Space Telescope"

1

Sonneborn, G. "Imaging and spectroscopy with the James Webb Space Telescope." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1798/.

Full text
Abstract:
The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the MilkyWay to our own Solar System. JWST’s instruments are designed to work primarily in the infrared range of 1 - 28 μm, with some capability in the visible range. JWST will have a large mirror, 6.5 m in diameter, and will be diffraction-limited at 2 μm (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the 1 - 28 μm wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.
APA, Harvard, Vancouver, ISO, and other styles
2

Nittler, Josefine. "Hunting for Dark Stars with the James Webb Space Telescope." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-356206.

Full text
Abstract:
The first stars in the Universe are thought to have formed in high dark matter density minihalos about 200 million years after the Big Bang. If these stars were able to contract dark matter into their stellar core while forming, some of them might have turned into dark stars (DSs) powered by the heat from dark matter annihilation. The possibilities for detection of DSs with the upcoming James Webb Space Telescope (JWST), scheduled for launch in 2021, is investigated in this work. With DS models generated in Spolyar et al. (2009) and atmosphere spectra from Gustafsson et al. (2008), spectral analysis has been carried out in MATLAB to find the unique colors of DSs compared to galaxies generated in Zackrisson et al. (2017) at z ≈ 7 − 11. It was found that lower temperature DSs (Teff ≤ 7800K) are distinguishable from galaxies and that they would be bright enough to be detected with the JWST provided a magnification factor of µ ≈ 160−1000 with the use of gravitational lensing. More recent DS models reveal that the DS of temperature Teff = 7800K is detectable even without the use of gravitational lensing. However, the probability of finding one today is really small due to DSs’ presumably short lifetime. The results of this work are hoped to give a better understanding of the properties of DSs and to increase the probability of finding one in the large imaging survey carried out by the JWST.
De första stjärnorna i universum antas ha bildats i minihalos med hög densitet av mörk materia omkring 200 miljoner år efter Big Bang. Om dessa stjärnor kunde dra till sig mörk materia under sitt bildande kan vissa av dem ha utvecklats till mörka stjärnor (s.k. dark stars) med mörk materia som energikälla. I detta arbete undersöks möjligheterna att upptäcka dem med det kommande James Webb Space Teleskopet (JWST) som planeras för uppskjutning år 2021. Med dark starmodeller genererade i Spolyar et al. (2009) och atmosfärspektra från Gustafsson et al. (2008) har spektralanalys utförts i MATLAB för att hitta vilka dark stars som går att urskilja från galaxer genererade i Zackrisson et al. (2017) vid z ≈ 7−11. Det visade sig att dark stars med låg temperatur (Teff ≤ 7800K) är urskiljbara och att de flesta av dessa dark stars, vid en förstoringsfaktor av µ ≈ 160−1000 vid användning av gravitationell linsning, är tillräckligt ljusstarka för att kunna detekteras. Jämfört med senare dark star-modeller skulle även Teff = 7800K DSs kunna detekteras utan användning av gravitaionell linsning. Sannolikheten att hitta en dark star är fortfarande väldigt liten på grund av dess förmodade korta livstid. Resultaten av detta arbete hoppas kunna ge en bättre förståelse för egenskaperna hos mörka stjärnor samt öka sannolikheten för detektion med JWST.
APA, Harvard, Vancouver, ISO, and other styles
3

Briggs, Michael. "Characterisation of the MIRI spectrometer, an instrument for the James Webb Space Telescope." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/3979.

Full text
Abstract:
The MIRI-MRS is a future space based Medium Resolution Spectrometer and one of four instruments to be integrated onto The James Webb Space Telescope. The Medium Resolution Spectrometer is designed to be diffraction limited across its entire passband of 5 - 28.3 microns. It achieves this through the spectral filtering of the passband into four channels with each one containing an integral field unit optimised for minimal diffraction losses. The integral field unit enables the simultaneous measurement of the spectral data across the entire field of view. The design of the Medium Resolution Spectrometer is outlined with particular reference to the choice of slice widths used for each channel to minimise the diffraction losses from the slicing mechanism. The slice widths are also used to derive the extent of the field of view and combined with the along slice plate scale at the detector the technique required for complete spatial sampling of the spectrometer is outlined. The operation of the Channel 1 image slicer component was tested cryogenically at 5 microns for diffraction losses due to the slicing of the point spread function. This was so that the actual diffraction losses could be measured and compared with the optical model. From the resulting analysis I concluded that the operation of the image slicers were well understood for diffraction losses. Performance tests were required on the instrument because of its novel design. This was the first implementation of an integral field unit operating between 5 - 28.3 microns and it was necessary to ensure that the operation of the image slicer did not induce unacceptable diffraction losses into the instrument. Tests were required on the assembled instrument to verify the optical design. A Verification Model of MIRI was built to enable test verification of the optical design. This testing was carried out in advance of the MIRI Flight Model assembly so that changes could be made to the Flight Model design if necessary. This testing phase was also designed to define the calibration process necessary to prepare the MIRI Flight Model for scientific operations. For the testing phase it was necessary to create an astronomical source simulator. This MIRI Telescope Simulator was constructed in Madrid where I spent two months ensuring the point source movement across the field of view would be sufficient to investigate the Medium Resolution Spectrometer. My contribution was to help assemble both the Verification and Flight Models. I also participated in the Verification Model testing phase from the test design phase to the test implementation and data analysis. My role in the analysis was to investigate the field of view of the Medium Resolution Spectrometer Verification Model and whether the field of view requirements for the spectrometer were met. During this analysis I also verified that the diffraction effects of the end-to-end instrument were well understood by the optical model. The Medium Resolution Spectrometer Verification Model field of view compromised the field of view requirement for the spectrometer. A similar analysis for the Flight Model showed that there would be a low probability that the field of view requirement would be met. As a result of the analysis I defined a new slit mask design that would align the field of view sampled by Channel 1 to increase the aligned field of view. As a result there is a high probability that the field of view requirement for the Flight Model will be exceeded. The test analysis discovered a magnification effect within the spectrometer which must be properly characterised to enable accurate field of view reconstruction. I designed a test necessary for the calibration phase of the Flight Model to enable full spatial alignment of the Medium Resolution Spectrometer. I also measured an excess flux level in the Channel 1 observations at the detector and there was a ghost detected in the Channel 1 images. Whilst the origin of either the excess flux or the ghost could not be completely determined I investigated the possibility that they will not be present in the Flight Model due to the slight design differences. If present however they will not increase the background level of an observation above the requirement outlined for Channel 1.
APA, Harvard, Vancouver, ISO, and other styles
4

Greene, Thomas P., Douglas M. Kelly, John Stansberry, Jarron Leisenring, Eiichi Egami, Everett Schlawin, Laurie Chu, Klaus W. Hodapp, and Marcia Rieke. "λ = 2.4 to 5 μm spectroscopy with the James Webb Space Telescope NIRCam instrument." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/626090.

Full text
Abstract:
The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.'2 x 2.'2 fields of view that can be observed with either imaging or spectroscopic modes. Either of two R similar to 1500 grisms with orthogonal dispersion directions can be used for slitless spectroscopy over lambda = 2.4 to 5.0 mu m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We describe the design drivers and parameters of the grisms and present the latest predicted spectroscopic sensitivities, saturation limits, resolving powers, and wavelength coverage values. Simultaneous short wavelength (0.6 to 2.3 mu m) imaging observations of the 2.4 to 5.0 mu m spectroscopic field can be performed in one of several different filter bands, either infocus or defocused via weak lenses internal to the NIRCam. The grisms are available for single-object time-series spectroscopy and wide-field multiobject slitless spectroscopy modes in the first cycle of JWST observations. We present and discuss operational considerations including subarray sizes and data volume limits. Potential scientific uses of the grisms are illustrated with simulated observations of deep extragalactic fields, dark clouds, and transiting exoplanets. Information needed to plan observations using these spectroscopic modes is also provided. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
APA, Harvard, Vancouver, ISO, and other styles
5

Hjort, Adam. "Future directions in the study of Asymptotic Giant Branch Stars with the James Webb Space Telescope." Thesis, Uppsala universitet, Observationell astrofysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-303344.

Full text
Abstract:
In this study we present photometric predictions for C-type Asymptotic Giant Branch Stars (AGB) stars from Eriksson et al. (2014) for the James Webb Space Telescope (JWST) and the Wide-field Infrared Survey Explorer (WISE) instruments. The photometric predictions we have done are for JWST’s general purpose wide-band filters on NIRCam and MIRI covering wavelengths of 0.7 — 21 microns. AGB stars contribute substantially to the integrated light of intermediate-age stellar popula- tions and is a substantial source of the metals (especially carbon) in galaxies. Studies of AGB stars are (among other reasons) important for the understanding of the chemical evolution and dust cycle of galaxies. Since the JWST is scheduled for launch in 2018 it should be a high priority to prepare observing strategies. With these predictions we hope it will be possible to optimize observing strategies of AGB stars and maximize the science return of JWST. By testing our method on Whitelock et al. (2006) objects from the WISE catalog and comparing them with our photometric results based on Eriksson et al. (2014) we have been able to fit 20 objects with models. The photometric data set can be accessed at: http://www.astro.uu.se/AGBmodels/
I den här studien har jag gjort fotometriska förutsägelser för asymptotis- ka jättegrensstjärnor (AGB-stjärnor) av C typ från Eriksson et al. (2014) modifierade för instrument ombord på James Webb Space Telescope (JWST) och Wide-field Infrared Survey Explorer (WISE). AGB-stjärnor bidrar kraftigt till det totala ljuset av stjärnor av intermediär ålder och är också en stor källa till metaller (speciellt kol) i galaxer. Studier av AGB stjärnor är viktiga av flera anledningar, däribland för att förstå den kemiska evolutionen och stoftcykler i galaxer. JWST är planerad att skjutas upp 2018 och fram till dess bör det vara en hög prioritet att förbereda observeringsstrategier. Med den fotometriska datan i den här studien hoppas vi att användare av JWST kommer kunna optimera sina observeringsstrategier av AGB-stjärnor och få ut så mycket som möjligt av sin obseravtionstid med teleskopet. Vi har testat metoden genom att titta på objekt från Whitelock et al. (2006) i WISE-katalogen och jämföra dem med de fotometriska resultaten baserade på modellerna från Eriksson et al. (2014). På detta sett har vi lyckats matcha 20 objekt med modeller. Den fotometriska datan går att ladda ner ifrån: http://www.astro.uu.se/AGBmodels/
APA, Harvard, Vancouver, ISO, and other styles
6

Glauser, Adrian Michael. "The mid infrared instrument of the James Webb space telescope : the Swiss hardware contribution and preparatory studies of protoplanetary disks /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hadj-Youcef, Mohamed Elamine. "Spatio spectral reconstruction from low resolution multispectral data : application to the Mid-Infrared instrument of the James Webb Space Telescope." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS326/document.

Full text
Abstract:
Cette thèse traite un problème inverse en astronomie. L’objectif est de reconstruire un objet 2D+λ, ayant une distribution spatiale et spectrale, à partir d’un ensemble de données multispectrales de basse résolution fournies par l’imageur MIRI (Mid-InfraRed Instrument), qui est à bord du prochain télescope spatial James Webb Space Telescope (JWST). Les données multispectrales observées souffrent d’un flou spatial qui dépend de la longueur d’onde. Cet effet est dû à la convolution par la réponse optique (PSF). De plus, les données multi-spectrales souffrent également d’une sévère dégradation spectrale en raison du filtrage spectral et de l’intégration par le détecteur sur de larges bandes. La reconstruction de l’objet original est un problème mal posé en raison du manque important d’informations spectrales dans l’ensemble de données multispectrales. La difficulté se pose alors dans le choix d’une représentation de l’objet permettant la reconstruction de l’information spectrale. Un modèle classique utilisé jusqu’à présent considère une PSF invariante spectralement par bande, ce qui néglige la variation spectrale de la PSF. Cependant, ce modèle simpliste convient que dans le cas d’instrument à une bande spectrale très étroite, ce qui n’est pas le cas pour l’imageur de MIRI. Notre approche consiste à développer une méthode pour l’inversion qui se résume en quatre étapes : (1) concevoir un modèle de l’instrument reproduisant les données multispectrales observées, (2) proposer un modèle adapté pour représenter l’objet à reconstruire, (3) exploiter conjointement l’ensemble des données multispectrales, et enfin (4) développer une méthode de reconstruction basée sur la régularisation en introduisant des priori à la solution. Les résultats de reconstruction d’objets spatio-spectral à partir de neuf images multispectrales simulées de l’imageur de MIRI montrent une augmentation significative des résolutions spatiale et spectrale de l’objet par rapport à des méthodes conventionnelles. L’objet reconstruit montre l’effet de débruitage et de déconvolution des données multispectrales. Nous avons obtenu une erreur relative n’excédant pas 5% à 30 dB et un temps d’exécution de 1 seconde pour l’algorithme de norm-l₂ et 20 secondes avec 50 itérations pour l’algorithme norm-l₂/l₁. C’est 10 fois plus rapide que la solution itérative calculée par l’algorithme de gradient conjugué
This thesis deals with an inverse problem in astronomy. The objective is to reconstruct a spatio-spectral object, having spatial and spectral distributions, from a set of low-resolution multispectral data taken by the imager MIRI (Mid-InfraRed Instrument), which is on board the next space telescope James Webb Space Telescope (JWST). The observed multispectral data suffers from a spatial blur that varies according to the wavelength due to the spatial convolution with a shift-variant optical response (PSF). In addition the multispectral data also suffers from severe spectral degradations because of the spectral filtering and the integration by the detector over broad bands. The reconstruction of the original object is an ill-posed problem because of the severe lack of spectral information in the multispectral dataset. The difficulty then arises in choosing a representation of the object that allows the reconstruction of this spectral information. A common model used so far considers a spectral shift-invariant PSF per band, which neglects the spectral variation of the PSF. This simplistic model is only suitable for instruments with a narrow spectral band, which is not the case for the imager of MIRI. Our approach consists of developing an inverse problem framework that is summarized in four steps: (1) designing an instrument model that reproduces the observed multispectral data, (2) proposing an adapted model to represent the sought object, (3) exploiting all multispectral dataset jointly, and finally (4) developing a reconstruction method based on regularization methods by enforcing prior information to the solution. The overall reconstruction results obtained on simulated data of the JWST/MIRI imager show a significant increase of spatial and spectral resolutions of the reconstructed object compared to conventional methods. The reconstructed object shows a clear denoising and deconvolution of the multispectral data. We obtained a relative error below 5% at 30 dB, and an execution time of 1 second for the l₂-norm algorithm and 20 seconds (with 50 iterations) for the l₂/l₁-norm algorithm. This is 10 times faster than the iterative solution computed by conjugate gradients
APA, Harvard, Vancouver, ISO, and other styles
8

Laurent-Prost, Florence. "Etude et modélisation des performances de systèmes découpeurs d'images pour l'astronomie : application à l'instrumentation du «James Webb space» téléscope et du «Very large» téléscope." Saint-Etienne, 2006. http://www.theses.fr/2006STET4012.

Full text
Abstract:
Les systèmes découpeurs d’images sont un nouveau type de spectrographes intégraux de champ pour l’instrumentation astronomique. Ce mémoire de thèse présente l’étude et la modélisation des performances de ces systèmes, basés sur un design optique comprenant un miroir découpeur. Ce dernier est constitué d’un empilement de slices, dont chaque surface active est sphérique et tiltée. Pour les instruments du JWST et du VLT, on a étudié deux technologies de fabrication et d’assemblage du miroir découpeur. La première, conçue en collaboration avec Cybernétix, présente un assemblage de slices en Zérodur maintenu par adhérence moléculaire. La deuxième, repose sur la technologie d’usinage diamant sur des métaux, en une pièce monolithique ou segmentée. Trois prototypes représentatifs de chaque technologie ont été testés sur banc optique à l’Observatoire de Lyon – rugosité, BRDF, profil de forme, alignement, grandissement du système, qualité image – et comparés aux spécifications de haut niveau. Une conclusion comparative des résultats obtenus est présentée afin d’orienter la meilleure technologie de découpeur d’images aux projets instrumentaux, qu’il s’agisse d’instruments mono ou multi-voies, au sol ou dans l’espace
Image slicers systems are a new type of integral field spectrographs for astronomical instrumentation. This dissertation presents the study and modelization of the performance of such systems based on an optical design including a slicing mirror. The latter consists of a stacking of slices with spherical and tilted active optical surfaces. In view of instrumentation of JWST and VLT, this work describes optical design, manufacturing, assembling, component test results (shape, roughness, BRDF) and overall system performance (image quality, alignment) of two alternative technologies for image slicers. Proposed by Cybernetix, the first one uses individual optical components made of Zerodur, polished by classical method and assembled together by molecular adhesion. The second one involves monolithic or segmented optical elements made of metal and state-of-the-art diamond-turning machines. Then, we conclude on a comparison between these two different technologies, giving the most suitable solutions for astronomical instruments, either ground or spaceborne, and mono or multi channels
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, Scott Curtis, and University of Lethbridge Faculty of Arts and Science. "Astronomical submillimetre Fourier transform spectroscopy from the Herschel Space Observatory and the JCMT." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Physics & Astronomy, c2010, 2010. http://hdl.handle.net/10133/2486.

Full text
Abstract:
Fourier transform spectroscopy (FTS) is one of the premier ways to collect source information through emitted radiation. It is so named because the principal measurement technique involves the analysis of spectra determined from the Fourier transform of a time-domain interference pattern. Given options in the field, many space- and ground-based instruments have selected Fourier transform spectrometers for their measurements. The Herschel Space Observatory, launched on May 14, 2009, has three on-board instruments. One, SPIRE, comprises a FTS paired with bolometer detector arrays. SCUBA-2 (Submillimetre Common User Bolometer Array) and FTS-2 have recently been commissioned and will be mounted within the collecting dish of the James Clerk Maxwell Telescope by Fall, 2010. The use of FTS in these two observatories will be examined. While work towards each project is independently useful, the thesis is bound by the commonality between the two, as each seeks similar answers from vastly different viewpoints.
xvii, 123 leaves : ill. (some col.) ; 29 cm
APA, Harvard, Vancouver, ISO, and other styles
10

Fischer, Sebastian [Verfasser]. "The LRS double prism assembly to be flown on the James Webb Space Telescope and host galaxies of active galactic nuclei in the near infrared / vorgelegt von Sebastian Fischer." 2008. http://d-nb.info/992129273/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "James Webb Space Telescope"

1

Center, Goddard Space Flight. The James Webb Space Telescope science guide. Greenbelt, Md. (8800 Greenbelt Rd., Greenbelt 20771): National Aeronautics and Space Administration, Goddard Space Flight Center, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tielens, A. G. G. M., Christensen Lars Lindberg, Stiavelli Massimo, Thronson Harley A, and SpringerLink (Online service), eds. Astrophysics in the Next Decade: The James Webb Space Telescope and Concurrent Facilities. Dordrecht: Springer Netherlands, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. Government Accountability Office. NASA's James Webb Space Telescope: Knowledge-based acquisition approach key to addressing program challenges. Washington, D.C: U.S. Government Accountability Office, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. Congress. House. Committee on Science, Space, and Technology (2011). The next great observatory: Assessing the James Webb Space Telescope : hearing before the Committee on Science, Space, and Technology, House of Representatives, One Hundred Twelfth Congress, first session, Tuesday, December 6, 2011. Washington: U.S. Government Printing Office, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

James Webb Space Telescope: Project meeting commitments but current technical, cost, and schedule challenges could affect continued progress : report to congressional committees. [Washington, D.C.]: United States Government Accountability Office, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lambright, W. Henry. Powering Apollo: James E. Webb of NASA. Baltimore: The John Hopkins University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bizony, Piers. The man who ran the moon: James E. Webb and the secret history of Project Apollo. New York, NY: Thunder's Mouth Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bizony, Piers. The man who ran the moon: James E. Webb and the secret history of Project Apollo. New York: Thunder's Mouth Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The man who ran the moon: James Webb, JFK and the secret history of Project Apollo. Thriplow: Icon, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

LINDA. NASA Logo James Webb Space Telescope the JWST. Independently Published, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "James Webb Space Telescope"

1

Chen, James L., and Adam Chen. "HST and the James Webb Space Telescope." In The Patrick Moore Practical Astronomy Series, 219–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18872-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beichman, Charles A., and Thomas P. Greene. "Observing Exoplanets with the James Webb Space Telescope." In Handbook of Exoplanets, 1–26. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-30648-3_85-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beichman, Charles A., and Thomas P. Greene. "Observing Exoplanets with the James Webb Space Telescope." In Handbook of Exoplanets, 1283–308. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-55333-7_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

English, Neil. "Looking to the Future: The James Webb Space Telescope." In Astronomers' Universe, 283–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27814-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Osterholt, Douglas J., David Cloutier, Timothy Marinone, and Reem Hejal. "Modal Testing of James Webb Space Telescope (JWST) Optical Telescope Element (OTE)." In Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9, 103–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30087-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rhee, George. "Tour de Force: The James Webb Telescope." In Astronomers' Universe, 251–65. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7813-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lambright, W. Henry. "Leading NASA in Space Exploration: James E. Webb, Apollo, and Today." In Leadership and Discovery, 79–98. New York: Palgrave Macmillan US, 2009. http://dx.doi.org/10.1057/9780230101630_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"James Webb Space Telescope." In Encyclopedia of Astrobiology, 1305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_100605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"James Webb Space Telescope." In Encyclopedia of Astrobiology, 878. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_2642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cottrell, Geoff. "9. The next telescopes." In Telescopes: A Very Short Introduction, 122–38. Oxford University Press, 2016. http://dx.doi.org/10.1093/actrade/9780198745860.003.0009.

Full text
Abstract:
Each question that telescopes have helped answer has led to new questions: what is dark matter and dark energy? How did the first galaxies form? Are there habitable, Earth-like exoplanets? To address these questions, a new generation of telescopes are being built. ‘The next telescopes’ describes some of these, including the three extremely large infrared/optical telescopes, equipped with adaptive optics systems, due to start operating in the next decade. Other new telescopes discussed are the Square Kilometre Array, a radio telescope that will soon be the world’s largest scientific instrument, and the James Webb Space Telescope due to be launched in 2018, which is the 100 times more powerful successor to the Hubble Space Telescope.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "James Webb Space Telescope"

1

Mather, John. "James Webb Space Telescope." In Space 2004 Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beckwith, Steven V. W. "Space telescopes after the James Webb Space Telescope." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Howard A. MacEwen. SPIE, 2004. http://dx.doi.org/10.1117/12.512725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mather, John C. "The James Webb Space Telescope." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.thjj3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gardner, Jon. "The James Webb Space Telescope." In From Planets to Dark Energy: the Modern Radio Universe. Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.052.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clampin, Mark. "The James Webb Space Telescope." In Frontiers in Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/fio.2008.stuc3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mather, John. "The James Webb Space Telescope." In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/aoms.2015.jt1a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mather, John C., Daniel J. Whalen, Volker Bromm, and Naoki Yoshida. "The James Webb Space Telescope Mission." In THE FIRST STARS AND GALAXIES: CHALLENGES FOR THE NEXT DECADE. AIP, 2010. http://dx.doi.org/10.1063/1.3518853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, Gregory S., and James M. Marsh. "James Webb Space Telescope Integration & Test." In AIAA SPACE 2016. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-5251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Back, Jason, Branwen Schuettpelz, Anthony Ewing, and Greg Laue. "James Webb Space Telescope Sunshield Membrane Assembly." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balzano, Vicki, and John Isaacs. "Event-Driven James Webb Space Telescope Operations." In SpaceOps 2006 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography