To see the other types of publications on this topic, follow the link: James Webb Space Telescope.

Journal articles on the topic 'James Webb Space Telescope'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'James Webb Space Telescope.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sharma, Anand Kumar. "James Webb Space Telescope." Resonance 27, no. 8 (August 23, 2022): 1355–69. http://dx.doi.org/10.1007/s12045-022-1431-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stockman, Hervey S. "James Webb Space Telescope." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 522–23. http://dx.doi.org/10.1017/s1743921307011660.

Full text
Abstract:
AbstractThe James Webb Space Telescope (JWST) is the scientific successor to the Hubble and Spitzer missions. Its wavelength range (1 - 28μm) and sensitivity (1 nJy - 1 μJy) complement the submillimeter facilities of the coming decade, Herschel and ALMA. The JWST development is on schedule for a June 2013 launch to L2 on an Ariane 5.
APA, Harvard, Vancouver, ISO, and other styles
3

Gardner, Jonathan P., John C. Mather, Mark Clampin, Rene Doyon, Matthew A. Greenhouse, Heidi B. Hammel, John B. Hutchings, et al. "The James Webb Space Telescope." Space Science Reviews 123, no. 4 (November 1, 2006): 485–606. http://dx.doi.org/10.1007/s11214-006-8315-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Banks, Michael. "NASA delays James Webb Space Telescope." Physics World 31, no. 5 (May 2018): 6. http://dx.doi.org/10.1088/2058-7058/31/5/9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clampin, Mark. "The James Webb Space Telescope (JWST)." Advances in Space Research 41, no. 12 (January 2008): 1983–91. http://dx.doi.org/10.1016/j.asr.2008.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabelhaus, Philip, and John Decker. "James Webb Space Telescope: Project Overview." IEEE Aerospace and Electronic Systems Magazine 22, no. 7 (July 2007): 3–13. http://dx.doi.org/10.1109/maes.2007.4285974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lightsey, Paul A. "James Webb Space Telescope: large deployable cryogenic telescope in space." Optical Engineering 51, no. 1 (February 3, 2012): 011003. http://dx.doi.org/10.1117/1.oe.51.1.011003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banks, Michael. "NASA’s James Webb Space Telescope takes space ‘selfie’." Physics World 35, no. 3 (August 1, 2022): 13ii. http://dx.doi.org/10.1088/2058-7058/35/03/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Castillo Rosales, Yvelice Soraya. "First James Webb Space Telescope´s images." Innovare: Revista de ciencia y tecnología 11, no. 2 (August 30, 2022): 111. http://dx.doi.org/10.5377/innovare.v11i2.14787.

Full text
Abstract:
From left to right and from top to bottom: 1. The Stephan's Quintet (interacting galaxies' group), 40 million and 290 million light-years away; 2. The Cartwheel Galaxy, a merger of galaxies of 144,300 light-years across, 500 million light-years away; 3. The spectrum of the exoplanet WASP-96b (1,150 light-years away), showing evaporated water; 4. James Webb telescope in its clean room; 5. The South Ring Nebula, 2,500 light-years away (12 light-years across); 6. Galactic cluster in the early universe SMACS 07323, 4,600,000,000 light-years away; 7. The star formation region NGC 3324 (Gabriela Mistral) in the Carina Nebula (NGC3372), 7,600 light-years away.
APA, Harvard, Vancouver, ISO, and other styles
10

Banks, Michael. "Milestone reached for James Webb Space Telescope." Physics World 29, no. 3 (March 2016): 17. http://dx.doi.org/10.1088/2058-7058/29/3/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Johnston, Hamish. "James Webb Space Telescope completes cryogenic testing." Physics World 31, no. 1 (January 2018): 7. http://dx.doi.org/10.1088/2058-7058/31/1/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Banks, Michael. "NASA's James Webb Space Telescope nears completion." Physics World 32, no. 10 (October 2019): 15. http://dx.doi.org/10.1088/2058-7058/32/10/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gardner, Jonathan P. "Science with the James Webb Space Telescope." Proceedings of the International Astronomical Union 1, S232 (November 2005): 87–98. http://dx.doi.org/10.1017/s1743921306000317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rivkin, Andrew S., Franck Marchis, John A. Stansberry, Driss Takir, and Cristina Thomas. "Asteroids and the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018003. http://dx.doi.org/10.1088/1538-3873/128/959/018003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Showstack, Randy. "Fate of James Webb Space Telescope murky." Eos, Transactions American Geophysical Union 92, no. 29 (July 19, 2011): 243. http://dx.doi.org/10.1029/2011eo290003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Loughran, J. "Nasa's James Webb Space Telescope Completes Full Assembly [Space]." Engineering & Technology 17, no. 1 (February 1, 2022): 11. http://dx.doi.org/10.1049/et.2022.0101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ngeow, Chow-Choong, Harsh Kumar, and Varun Bhalerao. "Demonstrating the Concept of Parallax with James Webb Space Telescope." Research Notes of the AAS 6, no. 3 (March 10, 2022): 47. http://dx.doi.org/10.3847/2515-5172/ac5b7a.

Full text
Abstract:
Abstract We measured the parallax of the James Webb Space Telescope based on near simultaneous observations using the Lulin One-meter Telescope and the GROWTH India Telescope, separated at a distance of ∼4214 km. This serves a great demonstration for the concept of parallax commonly taught in introductory astronomy courses.
APA, Harvard, Vancouver, ISO, and other styles
18

Wilkins, Alex. "James Webb Space Telescope snaps its first exoplanet…" New Scientist 255, no. 3403 (September 2022): 9. http://dx.doi.org/10.1016/s0262-4079(22)01605-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Karpenko, Mark, Jeffrey T. King, Cornelius J. Dennehy, and I. Michael Ross. "Agility Analysis of the James Webb Space Telescope." Journal of Guidance, Control, and Dynamics 42, no. 4 (April 2019): 810–21. http://dx.doi.org/10.2514/1.g003816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rauscher, Bernard J., Scott R. Antonille, Nicholas Boehm, Pamela S. Davila, Roger Foltz, Matthew A. Greenhouse, Jeffrey S. Gum, et al. "Overlight testing for the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 125, no. 934 (December 2013): 1465–73. http://dx.doi.org/10.1086/674176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Daukantas, Patricia. "Optical Innovations in the James Webb Space Telescope." Optics and Photonics News 22, no. 11 (November 1, 2011): 22. http://dx.doi.org/10.1364/opn.22.11.000022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Weber, Ryan, Semih Dinc, and Matthew Williams. "Americans’ Support for NASA’s James Webb Space Telescope." Science Communication 38, no. 5 (August 28, 2016): 601–25. http://dx.doi.org/10.1177/1075547016663001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Nixon, Conor A., Richard K. Achterberg, Máté Ádámkovics, Bruno Bézard, Gordon L. Bjoraker, Thomas Cornet, Alexander G. Hayes, et al. "Titan Science with the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018007. http://dx.doi.org/10.1088/1538-3873/128/959/018007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kelley, Michael S. P., Charles E. Woodward, Dennis Bodewits, Tony L. Farnham, Murthy S. Gudipati, David E. Harker, Dean C. Hines, et al. "Cometary Science with the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018009. http://dx.doi.org/10.1088/1538-3873/128/959/018009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Mary J., Ari-David Brown, Devin E. Burns, Daniel P. Kelly, Kyowon Kim, Alexander S. Kutyrev, Samuel H. Moseley, Vilem Mikula, and Lance Oh. "James Webb Space Telescope microshutter arrays and beyond." Journal of Micro/Nanolithography, MEMS, and MOEMS 16, no. 2 (April 7, 2017): 025501. http://dx.doi.org/10.1117/1.jmm.16.2.025501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kalirai, Jason. "Scientific discovery with the James Webb Space Telescope." Contemporary Physics 59, no. 3 (July 3, 2018): 251–90. http://dx.doi.org/10.1080/00107514.2018.1467648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Banks, Michael. "A cosmic tarantula is captured by NASA’s James Webb Space Telescope." Physics World 35, no. 10 (December 1, 2022): 12–13. http://dx.doi.org/10.1088/2058-7058/35/10/17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Banks, Michael. "New images show the James Webb Space Telescope’s fully aligned optics." Physics World 35, no. 6 (August 1, 2022): 9ii. http://dx.doi.org/10.1088/2058-7058/35/06/13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

MacIsaac, Dan. "James Webb Space Telescope in the news." Physics Teacher 60, no. 2 (February 2022): 159. http://dx.doi.org/10.1119/10.0009437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rowlands, Neil, Karl Saad, John B. Hutchings, and René Doyon. "James Webb Space Telescope (JWST) Fine Guidance Sensor: overview." Canadian Aeronautics and Space Journal 55, no. 2 (August 2009): 69–78. http://dx.doi.org/10.5589/q09-006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ilie, Cosmin, Katherine Freese, Monica Valluri, Ilian T. Iliev, and Paul R. Shapiro. "Observing supermassive dark stars with James Webb Space Telescope." Monthly Notices of the Royal Astronomical Society 422, no. 3 (April 10, 2012): 2164–86. http://dx.doi.org/10.1111/j.1365-2966.2012.20760.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sonneborn, George. "Imaging and Spectroscopy with the James Webb Space Telescope." Proceedings of the International Astronomical Union 3, S250 (December 2007): 491–94. http://dx.doi.org/10.1017/s1743921308020863.

Full text
Abstract:
AbstractThe James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 μm, with some capability in the visible range. JWST will have a large segmented mirror, ~6.5 m in diameter, and will be diffraction-limited at 2 μm (< 0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the 1 - 28 μm wavelength range. The breakthrough capabilities of JWST will enable new studies of massive stars from the Milky Way to the early universe.
APA, Harvard, Vancouver, ISO, and other styles
33

Banks, Michael. "James Webb Space Telescope delayed yet again - to 2021." Physics World 31, no. 8 (August 2018): 7. http://dx.doi.org/10.1088/2058-7058/31/8/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Norwood, James, Julianne Moses, Leigh N. Fletcher, Glenn Orton, Patrick G. J. Irwin, Sushil Atreya, Kathy Rages, et al. "Giant Planet Observations with the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018005. http://dx.doi.org/10.1088/1538-3873/128/959/018005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Docherty, Molly. "The golden eye of the James Webb Space Telescope." New Scientist 215, no. 2881 (September 2012): 22–23. http://dx.doi.org/10.1016/s0262-4079(12)62314-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rauscher, Bernard J., and Michael E. Ressler. "The James Webb Space Telescope and its Infrared Detectors." Experimental Astronomy 19, no. 1-3 (June 29, 2006): 149–62. http://dx.doi.org/10.1007/s10686-005-9015-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

te Plate, Maurice, Brian O’Sullivan, Pierre Ferruit, David Lee, Martyn Wells, Jess Koehler, Markus Melf, and Wolfgang Holota. "The European optical contribution to the James Webb Space Telescope." Advanced Optical Technologies 7, no. 6 (December 19, 2018): 353–64. http://dx.doi.org/10.1515/aot-2018-0041.

Full text
Abstract:
Abstract The James Webb Space Telescope (JWST) is frequently referred to as the follow-on mission to the Hubble Space Telescope (HST). The ‘Webb’ will be the biggest space telescope ever built and is expected to enable astounding new science. The observatory comprises a 6.5-m-diameter telescope with a segmented primary mirror and four high-performance optical science instruments. The JWST has mostly been optimized to work in the near- (0.6–5.0 μm) and mid-infrared (5.0–29 μm) wavelength regions. The project is a strong international partnership led by the National Aeronautics and Space Administration (NASA) with contributions from the European Space Agency (ESA) and the Canadian Space Agency (CSA). The observatory is currently scheduled for launch in early 2021 from Kourou, French Guyana, by an ESA-provided Ariane 5 rocket. This paper will focus on the European optical contribution to the mission, which mainly consists of two highly advanced optical science instruments: The multi-object near-infrared spectrograph (NIRSpec) and the mid-infrared instrument (MIRI). The opto-mechanical design considerations and the realization of both instruments will be described, and we will conclude with a short JWST project status report and future outlook.
APA, Harvard, Vancouver, ISO, and other styles
38

Pozniak, H. "Deep-space observatory prepares for lift off [James Webb Space Telescope]." Engineering & Technology 14, no. 7 (August 1, 2019): 72–75. http://dx.doi.org/10.1049/et.2019.0710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Clery, Daniel. "First light machine." Science 374, no. 6569 (November 12, 2021): 806–11. http://dx.doi.org/10.1126/science.acx9595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Banks, Michael. "James Webb Space Telescope image peers into the chaos of the Cartwheel galaxy." Physics World 35, no. 9 (November 1, 2022): 9ii. http://dx.doi.org/10.1088/2058-7058/35/09/11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Banks, Michael. "James Webb Space Telescope reveals its first spectacular images of the cosmos." Physics World 35, no. 8 (September 1, 2022): 10ii. http://dx.doi.org/10.1088/2058-7058/35/08/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Clampin, Mark. "The James Webb Space Telescope and its capabilities for exoplanet science." Proceedings of the International Astronomical Union 6, S276 (October 2010): 335–42. http://dx.doi.org/10.1017/s1743921311020400.

Full text
Abstract:
AbstractThe James Webb Space Telescope is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 ?m to 28 ?m. JWSTs primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. JWSTs instrument complement offers numerous capabilities to study the formation and evolution of exoplanets via direct imaging, high contrast coronagraphic imaging and photometric and spectroscopic observations of transiting exoplanets.
APA, Harvard, Vancouver, ISO, and other styles
43

Thomas, Cristina A., Paul Abell, Julie Castillo-Rogez, Nicholas Moskovitz, Michael Mueller, Vishnu Reddy, Andrew Rivkin, Erin Ryan, and John Stansberry. "Observing Near-Earth Objects with the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018002. http://dx.doi.org/10.1088/1538-3873/128/959/018002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Parker, Alex, Noemi Pinilla-Alonso, Pablo Santos-Sanz, John Stansberry, Alvaro Alvarez-Candal, Michele Bannister, Susan Benecchi, et al. "Physical Characterization of TNOs with the James Webb Space Telescope." Publications of the Astronomical Society of the Pacific 128, no. 959 (January 1, 2016): 018010. http://dx.doi.org/10.1088/1538-3873/128/959/018010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Banks, Michael. "NASA celebrates JWST deployment." Physics World 35, no. 2 (February 1, 2022): 8–9. http://dx.doi.org/10.1088/2058-7058/35/02/10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Banks, Michael. "NASA engulfed in JWST renaming row." Physics World 34, no. 11 (December 1, 2021): 15i. http://dx.doi.org/10.1088/2058-7058/34/11/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Barstow, Joanna K. "The curse of clouds." Astronomy & Geophysics 62, no. 1 (February 1, 2021): 1.36–1.42. http://dx.doi.org/10.1093/astrogeo/atab044.

Full text
Abstract:
Abstract Joanna K Barstow explores spectroscopic observations of transiting exoplanets, modelling their atmospheric clouds, and the forthcoming era of hot exoplanet research with the James Webb Space Telescope
APA, Harvard, Vancouver, ISO, and other styles
48

Kim, Daewook, Tom D. Milster, and Dániel Apai. "Nautilus: The advent of large lens-based space telescopes." EPJ Web of Conferences 266 (2022): 03014. http://dx.doi.org/10.1051/epjconf/202226603014.

Full text
Abstract:
One of the most profound and philosophically captivating foci of modern astronomy is studies of Earth-like exoplanets in search of life in the Universe. The paradigm-shifting investigation described here calls for a new type of space telescope that redefines the available light-collecting area in space, far beyond what is currently possible with the 6.5 m diameter James Webb Space Telescope. The Nautilus Space Observatory, which is enabled by multiple-order diffractive optics, is ushering in the advent of large space telescope lenses designed to search for biosignatures on a thousand exo-earths.
APA, Harvard, Vancouver, ISO, and other styles
49

Theissen, Christopher A., Adam J. Burgasser, Emily C. Martin, Michael C. Cushing, Quinn M. Konopacky, Ian S. McLean, Chih-Chun Hsu, et al. "Keck NIRES Spectral Standards for L, T, and Y Dwarfs." Research Notes of the AAS 6, no. 7 (July 27, 2022): 151. http://dx.doi.org/10.3847/2515-5172/ac8425.

Full text
Abstract:
Abstract We present medium-resolution (λ/Δλ = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope.
APA, Harvard, Vancouver, ISO, and other styles
50

Lotz, Jennifer. "The Frontier Fields: Past, Present, and Future." Proceedings of the International Astronomical Union 11, A29B (August 2015): 751–54. http://dx.doi.org/10.1017/s1743921316006712.

Full text
Abstract:
AbstractExceptionally deep observations of the distant universe with the Hubble Space Telescope have consistently pushed the frontiers of human knowledge. How deep can we go? What are the faintest and most distant galaxies we can see with the Hubble Space Telescope now, before the launch of the James Webb Space Telescope? This is the challenge taken up by the Frontier Fields, a director's discretionary time campaign with HST and the Spitzer Space Telescope to see deeper into the universe than ever before. The Frontier Fields combines the power of HST with the natural gravitational telescopes of high-magnification clusters of galaxies to produce the deepest observations of clusters and their lensed galaxies ever obtained. I will review the original goals of the Frontier Fields program and its progress over the last several years. In addition to pushing forward the study of the most distant galaxies, the Frontier Fields have been transformative in the study of galaxy clusters and their lensing properties. Finally, I will discuss the prospects for studying galaxies at cosmic dawn with JWST, extremely large ground-based telescopes, and future space missions over the next decade and beyond.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography