Academic literature on the topic 'Jarrah – Western Australia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jarrah – Western Australia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Jarrah – Western Australia"

1

Abbott, I. "Distribution of introduced earthworms in the norhtern jarrah forest of Western Australia." Soil Research 23, no. 2 (1985): 263. http://dx.doi.org/10.1071/sr9850263.

Full text
Abstract:
Five species of introduced earthworm were recorded in the northern jarrah forest of Western Australia during 1980-83. These are Aporrectodea trapezoides (Duges), A. caliginosa (Savigny), Eisenia fetida (Savigny), Octolasion cyaneum (Savigny) (all Lumbricidae) and Microscolex dubius (Fletcher) (Megascolecidae). A. trapezoides was recorded most frequently. These introduced species occur within the forest only where there has been major disturbance, especially where forest has been replaced by pasture, orchards or settlement. They have not been recorded in forest that has been logged or in plantations of exotic trees. Introduced species of earthworm were frequently found in association with indigenous species. Most individuals of A. trapezoides kept in jarrah forest soil in the laboratory lost weight over 30 days, in contrast to an indigenous species of earthworm. How and when earthworm species were introduced is discussed in terms of the early European history of the jarrah forest.
APA, Harvard, Vancouver, ISO, and other styles
2

Stukely, M. J. C., J. L. Webster, J. A. Ciampini, N. L. Kerp, I. J. Colquhoun, W. A. Dunstan, and G. E. St J. Hardy. "A new homothallicPhytophthorafrom the jarrah forest in Western Australia." Australasian Plant Disease Notes 2, no. 1 (2007): 49. http://dx.doi.org/10.1071/dn07022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McDougall, K. L., R. J. Hobbs, and G. E. St J. Hardy. "Distribution of understorey species in forest affected by Phytophthora cinnamomi in south-western Western Australia." Australian Journal of Botany 53, no. 8 (2005): 813. http://dx.doi.org/10.1071/bt04203.

Full text
Abstract:
The introduced soil-borne pathogen Phytophthora cinnamomi Rands infects and kills a large number of species in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia, causing great floristic and structural change. Many of the floristic changes can be explained simply by the known susceptibility of species to infection. Some common species, however, are rarely found at infested sites but are thought to be resistant to infection. It has been postulated that such species may be affected by the change in habitat caused by the death of trees, and not by P. cinnamomi directly. If this were the case, such species should cluster around surviving trees at infested sites. The occurrence of a susceptible species in the vicinity of trees surviving at infested sites has also been reported. To investigate the spatial relationship between trees and understorey species, the positions of trees and selected perennial understorey species were mapped at two sites in jarrah forest long-affected by P. cinnamomi. Random sets of plants and trees were generated and used in simulations to test whether understorey species grew closer to trees than expected. Many understorey species, both resistant and susceptible to infection by P. cinnamomi, were found to grow closer than expected to trees currently growing at the sites and closer to the trees that would have been present at the time of infestation. This suggests that not only do these trees enable some resistant species to persist at infested sites but that they also offer protection to some susceptible species against damage by P. cinnamomi. The proximity of many understorey species to trees that are likely to have appeared at the study sites since the first infestation indicates that the maintenance and enhancement of tree cover at infested sites in the jarrah forest may limit the damage caused by P. cinnamomi and assist in the protection of biodiversity.
APA, Harvard, Vancouver, ISO, and other styles
4

Craig, Michael D. "The ecology of the rufous treecreeper in the jarrah forest of south-western Australia and implications for its conservation and management." Australian Journal of Zoology 55, no. 1 (2007): 41. http://dx.doi.org/10.1071/zo06046.

Full text
Abstract:
Rufous treecreepers (Climacteris rufa) are common in southern jarrah forests of Western Australia, but nothing has been recorded of their ecology in the region. I investigated the foraging and nesting ecology of the species in the southern jarrah forests from January 1994 to April 1996. Rufous treecreepers foraged exclusively on two eucalypt species, jarrah and marri, and foraged on trees that were significantly larger and taller than random. Foraging on the ground, logs and fallen trees was relatively infrequent. Nest hollows were also located exclusively in jarrah and marri trees that were significantly larger and taller than random. The important foraging and nesting resources for the species in the southern jarrah forest appear to be large mature and overmature eucalypts. Anthropogenic impacts in the region, primarily logging, should aim to retain these resources in affected areas to improve the survival prospects of the species. When compared with studies in wandoo woodlands, the results of the present study indicate that the conservation of ground-layer habitat is likely to be of less importance in the jarrah forest. These habitat differences indicate that site-specific information is critical if the management and conservation of individual species is to be effective.
APA, Harvard, Vancouver, ISO, and other styles
5

McChesney, Catherine J., John M. Koch, and David T. Bell. "Jarrah Forest Restoration in Western Australia: Canopy and Topographic Effects." Restoration Ecology 3, no. 2 (June 1995): 105–10. http://dx.doi.org/10.1111/j.1526-100x.1995.tb00083.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koch, John M., and Glen P. Samsa. "Restoring Jarrah Forest Trees after Bauxite Mining in Western Australia." Restoration Ecology 15 (December 12, 2007): S17—S25. http://dx.doi.org/10.1111/j.1526-100x.2007.00289.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abbott, I., P. Van Heurck, T. Burbidge, and A. Wills. "Factors influencing the performance of jarrah leafminer (Lepidoptera) within stands of jarrah forest of Western Australia." Australian Forestry 57, no. 4 (January 1994): 165–70. http://dx.doi.org/10.1080/00049158.1994.10676133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grant, Carl D., and John Koch. "Orchid species succession in rehabilitated bauxite mines in Western Australia." Australian Journal of Botany 51, no. 4 (2003): 453. http://dx.doi.org/10.1071/bt02127.

Full text
Abstract:
Twenty-three orchid species were recorded in Alcoa's permanent vegetation-monitoring plots in unmined and rehabilitated jarrah forest. Of these, 22 were identified in the unmined jarrah forest and 20 were recorded in rehabilitated areas of between 1 and 31 years old. Three species (Cyrtostylis ovata, Lyperanthus serratus and Prasophyllum elatum) were only recorded in the unmined forest and one species was only recorded in rehabilitated areas (Diuris carinata). The overall density of native orchids in the forest was 13 755 plants ha–1, 10 times greater than the density in rehabilitated areas (1381 plants ha–1). The most abundant species in the forest were Cyrtostylis robusta, Caladenia flava, Pterostylis nana and Thelymitra crinita, all with densities greater than 1000 plants ha–1. The most abundant species in the rehabilitated areas were Microtis media, Disa bracteata (an introduced species), Caladenia flava, Pterostylis nana, Diuris longifolia and Pterostylis vittata, all with densities greater than 60 plants ha–1. In rehabilitation older than 10 years, the density of orchids increased to 2685 plants ha–1. Burning in rehabilitated areas resulted in large increases in orchid densities. It is believed that orchid colonisation of rehabilitated bauxite mines is dependent on symbiotic mycorrhiza, which are in turn dependent on development of an organic litter component in the soil.
APA, Harvard, Vancouver, ISO, and other styles
9

Majer, Jonathan D., Harry F. Recher, Christopher Norwood, and Brian E. Heterick. "Variation in bird assemblages and their invertebrate prey in eucalypt formations across a rainfall gradient in south-west Australia." Pacific Conservation Biology 23, no. 4 (2017): 372. http://dx.doi.org/10.1071/pc17024.

Full text
Abstract:
Our previous work has shown how invertebrate food resources influence usage of tree species by birds. Using data from Western Australian forests and woodlands, we extend the findings to indicate how the avifauna is influenced by these resources at the landscape level. The northern dry sclerophyll forest of south-west Australia comprises jarrah (Eucalyptus marginata) to the west, with an abrupt replacement by wandoo (E. wandoo) plus powderbark wandoo (E. accedens) woodland to the east; codominant marri (Corymbia calophylla) trees occur throughout. Knockdown samples have previously indicated that the canopy invertebrate fauna is richer and more abundant in wandoo woodland than in jarrah/marri forest. To provide an indication of their general abundance and diversity in these formations, invertebrates using the trunks of the ubiquitous marri were measured along a transect from jarrah/marri forest to wandoo woodland. Mirroring the canopy, the trunk fauna had high species turnover over short distances. As with the canopy fauna, invertebrate diversity and abundance was higher on marri situated in the wandoo zone than in the jarrah/marri areas, indicating a generally larger invertebrate fauna in the drier regions of the transect. Abundance and diversity of birds, many of which are wholly or partly insectivorous, were measured at the same sites. Birds were more abundant and there were more species in areas with the wandoo species than in those dominated by jarrah/marri. Assemblage composition also differed in the two forest types. It is evident that changes in bird abundance, richness, and assemblage composition are likely determined on a landscape scale by the type, abundance, and diversity of food resources available to them. These patterns of change within forest invertebrate faunas and their primary vertebrate predators need to be considered when making decisions on conserving or managing forest communities in Australia.
APA, Harvard, Vancouver, ISO, and other styles
10

Ruprecht, J. K., and G. L. Stoneman. "Water yield issues in the jarrah forest of south-western Australia." Journal of Hydrology 150, no. 2-4 (October 1993): 369–91. http://dx.doi.org/10.1016/0022-1694(93)90117-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Jarrah – Western Australia"

1

Bunny, F. "The biology, ecology and taxonomy of Phytophthora citricola in native plant communities in Western Australia /." Access via Murdoch University Digital Theses Project, 1996. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20061122.122739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bleby, Timothy Michael. "Water use, ecophysiology and hydraulic architecture of Eucalyptus marginata (jarrah) growing on mine rehabilitation sites in the jarrah forest of south-western Australia." University of Western Australia. School of Plant Biology, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0004.

Full text
Abstract:
[Truncated abstract. Please see the pdf format for the complete text. Also, formulae and special characters can only be approximated here. Please see the pdf version for an accurate reproduction.] This thesis examines the water use, ecophysiology and hydraulic architecture of Eucalyptus marginata (jarrah) growing on bauxite mine rehabilitation sites in the jarrah forest of south-western Australia. The principal objective was to characterise the key environment and plant-based influences on tree water use, and to better understand the dynamics of water use over a range of spatial and temporal scales in this drought-prone ecosystem. A novel sap flow measurement system (based on the use of the heat pulse method) was developed so that a large number of trees could be monitored concurrently in the field. A validation experiment using potted jarrah saplings showed that rates of sap flow (transpiration) obtained using this system agreed with those obtained gravimetrically. Notably, diurnal patterns of transpiration were measured accurately and with precision using the newly developed heat ratio method. Field studies showed that water stress and water use by jarrah saplings on rehabilitation sites were strongly seasonal: being greatest in summer when it was warm and dry, and least in winter when it was cool and wet. At different times, water use was influenced by soil water availability, vapour pressure deficit (VPD) and plant hydraulic conductance. In some areas, there was evidence of a rapid decline in transpiration in response to dry soil conditions. At the end of summer, most saplings on rehabilitation sites were not water stressed, whereas water status in the forest was poor for small saplings but improved with increasing size. It has been recognised that mature jarrah trees avoid drought by having deep root systems, however, it appears that saplings on rehabilitation sites may have not yet developed functional deep roots, and as such, they may be heavily reliant on moisture stored in surface soil horizons. Simple predictive models of tree water use revealed that stand water use was 74 % of annual rainfall at a high density (leaf area index, LAI = 3.1), high rainfall (1200 mm yr-1) site, and 12 % of rainfall at a low density (LAI = 0.4), low rainfall (600 mm yr-1) site, and that water use increased with stand growth. A controlled field experiment confirmed that: (1) sapling transpiration was restricted as root-zone water availability declined, irrespective of VPD; (2) transpiration was correlated with VPD when water was abundant; and (3) transpiration was limited by soil-to-leaf hydraulic conductance when water was abundant and VPD was high (> 2 kPa). Specifically, transpiration was regulated by stomatal conductance. Large stomatal apertures could sustain high transpiration rates, but stomata were sensitive to hydraulic perturbations caused by soil water deficits and/or high evaporative demand. No other physiological mechanisms conferred immediate resistance to drought. Empirical observations were agreeably linked with a current theory suggesting that stomata regulate transpiration and plant water potential in order to prevent hydraulic dysfunction following a reduction in soil-to-leaf hydraulic conductance. Moreover, it was clear that plant hydraulic capacity determined the pattern and extent of stomatal regulation. Differences in hydraulic capacity across a gradient in water availability were a reflection of differences in root-to-leaf hydraulic conductance, and were possibly related to differences in xylem structure. Saplings on rehabilitation sites had greater hydraulic conductance (by 50 %) and greater leaf-specific rates of transpiration at the high rainfall site (1.5 kg m-2 day1) than at the low rainfall site (0.8 kg m-2 day1) under near optimal conditions. Also, rehabilitation-grown saplings had significantly greater leaf area, leaf area to sapwood area ratios and hydraulic conductance (by 30-50 %) compared to forest-grown saplings, a strong indication that soils in rehabilitation sites contained more water than soils in the forest. Results suggested that: (1) the hydraulic structure and function of saplings growing under the same climatic conditions was determined by soil water availability; (2) drought reduced stomatal conductance and transpiration by reducing whole-tree hydraulic conductance; and (3) saplings growing on open rehabilitation sites utilised more abundant water, light and nutrients than saplings growing in the forest understorey. These findings support a paradigm that trees evolve hydraulic equipment and physiological characteristics suited to the most efficient use of water from a particular spatial and temporal niche in the soil environment.
APA, Harvard, Vancouver, ISO, and other styles
3

Lalor, Briony Maree. "An assessment of the recovery of the microbial community in jarrah forest soils after bauxite mining and prescription burning." University of Western Australia. School of Earth and Geographical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0037.

Full text
Abstract:
[Truncated abstract] Recovery of soil nutrients, microbial populations and carbon (C) and nitrogen (N) cycling processes are critical to the success of rehabilitation following major ecosystem disturbance. Bauxite mining represents a major ecosystem disturbance to the jarrah (Eucalyptus marginata) forest in the south-west of Western Australia. Mining has created a mosaic of mined areas in various stages of succession surrounded by non-mined forest areas. Initial site preparations within rehabilitation areas such as contour ripping alter soil structure (creation of mound and furrows) and over time also influence the distribution of vegetation and litter. Current performance criteria developed by industry, government and other stakeholders have determined that before post-bauxite mined areas of jarrah forest can be integrated back into normal forest management practises they should be functional and demonstrate resilience to normal forest disturbances such as fire. Furthermore, resilience should be of a manner comparable to non-mined analogue forest sites. Currently little is known of the resilience of microbial communities and C and N cycling in rehabilitation sites to normal forest disturbances such as prescription burning. As such, before rehabilitated jarrah forests can be successfully integrated into broad scale forest management regimes, a more thorough knowledge of the potential impacts of burning practises on the soil microbial community and C and N cycling processes in these systems is required. ... While there are similar rates of C and N cycling the underlying microbial community structure was distinctly different; implying a high degree of functional redundancy with respect to C and N cycling. Differences in the C and N cycling and structure of the microbial communities were likely to be due to differences in soil environmental conditions (i.e. soil alkalinity/acidity, soil moisture) and C substrate availability which influence the physiological status of the microbial community and in turn are related to successional age of the forests. Results also suggest that the measurement of CLPP can be a useful approach for assessment of changes in the functional ability of microbial communities. However, the interpretation of how well these rehabilitation forests have recovered heterotrophic abilities was greatly affected by the methodological approach used (e.g. MicroRespTM or Degens and Harris, 1997). Importantly, results from Chapter 4 and 5 suggested that the effects of a moderate prescription fire on C and N processes, CLPP and microbial community structure of 18 year old rehabilitation forests are likely to be short-lived (< 2 years). Furthermore, the effects of the moderate spring prescription fire were not large enough to decouple C and N cycling processes over the short-term (< 1 years) which suggests that by 18 years of age rehabilitation forests demonstrate comparable functional resilience to a moderate prescription burn.
APA, Harvard, Vancouver, ISO, and other styles
4

Bunny, Felicity J. "The biology, ecology and taxonomy of Phytophthora citricola in native plant communities in Western Australia." Murdoch University, 1996. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20061122.122739.

Full text
Abstract:
The objectives of the project were to develop an understanding of the disease dynamics caused by Phytophthora citricola in native plant communities in the south of Western Australia. Prior to 1983, the pathogen had only been reported twice from Australian forests. Since then, P. citricola has been extensively recorded from plant communities north and south of Perth, and is currently the second most frequently recovered Phytophthora species from the northern jarrah forest and the northern sandplains. The objectives were addressed by examining the biology, ecology and taxonomy of isolates of P. citricola local to the southwest. Examination of the intraspecific variation of P. citricola by isozyme analysis resolved three major electrophoretic subgroups (SG), and these were aligned with morphological and cultural variation within the species. One electrophoretic SG was confined to forested areas. This SG differed from other SGs in sporangial dimensions, growth rate on two media and in vitro sensitivity to phosphonate. A redescription of the species may be warranted. P. citricola was positively associated with two roads in the northern jarrah forest. Road surfaces were sampled, then soil overburden was removed and the surface of the concreted lateritic layer beneath was sampled. Isolation of P. citricola declined away from the road into the adjacent forest and was more frequently recovered from the caprock (up to 1 metre below soil surface) than from the soil surface. The most probable source of introduction was from infested soil on vehicles using the roads. Oospores were shown to be produced in two soils, a lateritic gravelly loam and sand, and in plants. In soil, the electrophoretic SG confined to the forest (loamy soil) produced only limited numbers of oospores in the sandy soil of the northern sandplain. The restriction of this SG to the forested areas is probably physiological, rather than limited dispersal, with the SG currently occupying the full extent of its range. Estimation of the relative persistence of oospores, zoospores and plant material colonised by P. citricola established that only oospores (either free in soil or in colonised plant material) were important in long tern survival in soil. Oospores were still viable after six months at two field sites, and after 18 months in soil in the laboratory. Phosphonate is currently the most promising method of control of Phytophthora induced disease in native plant cornmunites of the southwest. The efficacy of phosphonate against P. citricola was examined in vivo and in vitro against two SGs. Phosphonate successfully inhibited lesion growth of both SGs in vivo, but of only one electrophoretic subgroup in vitro. The ecological implications of infestation of native plant communities in the southwest of Australia are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

au, D. Huberli@murdoch edu, and Daniel Huberli. "Phenotypic variation of two localised populations of Phytophthora cinnamomi from Western Australia and how they impact on Eucalyptus marginata resistance." Murdoch University, 2001. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20070827.91902.

Full text
Abstract:
Phytophthora cinnamomi is an introduced soilborne phytopathogen to Western Australia (WA) and impacts on 2000 of the approximately 9000 plant species indigenous in the southwest of WA. Amongst these is Eucalyptus marginata (jarrah), the dominant and economically important hardwood timber species of the jarrah forest. This thesis aimed to investigate the morphological, pathogenic and genotypic variation in two local WA populations of P. cinnamomi isolates. The populations were selected from areas where jarrah clonal lines selected for resistance to P. cinnamomi may be used in the rehabilitation of infested jarrah forest and rehabilitated bauxite minesites in the southwest of WA. Resistance against a range of isolates using different inoculation methods. Seventy-three isolates of P. cinnamomi were collected from diseased jarrah and Corymbia calophylla (marri) trees from two populations located 70 km apart and these were examined for phenotypic and genotypic variation. Microsatellite DNA analysis showed that all isolates were of the same clonal lineage. In P. cinnamomi for the first time I show that there is a broad and continuous variation in the morphology and pathology between two populations of one clonal lineage, and that all phenotypes varied independently from one another. No relationship was found between morphological and pathogenic characters. The ability of isolates in both populations to cause deaths ranged from killing all plants within 59 days to plants being symptomless 182 days after inoculation. Single and multiple paragynous antheridia formed along with amphigynous ones in mating studies with all WA isolates and a sample of worldwide isolates. Developmental studies and cytological examination showed fertilisation tubes developed asynchronously or synchronously from both antheridial types and indicated that either antheridial type contributed a nucleus for fertilisation of the oosphere. This is the first report of paragynous antheridial associations in P. cinnamomi. Antheridial variation is a characteristic that needs to be adjusted in the taxonomic Phytophthora identification keys. In underbark and zoospore stem inoculations of three 1.5-year-old jarrah clonal lines (two ranked as resistant (RR) and one as susceptible (SS) to P. cinnamomi in the original selection trials) at 15, 20, 25 and 30°C, it was found that the method of inoculation did not produce comparable results, particularly at 25 and 30°C. At these temperatures, all three clonal lines had 100% mortality when inoculated underbark, but when inoculated with zoospores, one RR line had 60% survival and the SS and remaining RR line had 100% mortality. Generally, the level of resistance of all clonal lines declined with increasing temperature. Lesion development was measured at 20, 25 and 30°C for 4 days in detached branches of an RR and SS clonal line inoculated underbark with four different P. cinnamomi isolates. Detached branches were found to be a potential screen for jarrah resistance to P. cinnamomi and to allow the identification of susceptible and resistant clonal lines at 30°C. Lesion and colonisation development of P. cinnamomi isolates were assessed in situ (late autumn) of seed-grown and clonal lines of 3.5 to 4.5 year-old jarrah trees growing in a rehabilitated minesite jarrah forest in underbark inoculation of lateral branches (1995) or simultaneously in lateral branches and lateral roots (1996). Trees were underbark inoculated in lateral branches and lateral roots. Colonisation was more consistent as a measure of resistance than lesion length over the two trials because it accounted for the recovery of P. cinnamomi from macroscopically symptomless tissue beyond lesions, which on some occasions, was up to 6 cm. In the two trials, one RR clonal line consistently had small lesion and colonisation lengths in branches and roots. In contrast, the remaining two RR clonal lines had similar lesion and colonisation lengths to the SS clonal line and may, therefore, not be suitable for use in the rehabilitation of P. cinnamomi infested areas. The relative rankings of the jarrah clonal lines by colonisation lengths were similar between branch and root inoculations. Branch inoculations are a valid option for testing resistance and susceptibility of young jarrah trees to P. cinnamomi. The pathogen was recovered on Phytophthora selective agar 3–6 months after inoculation from 50% of samples with lesions and 30% of symptomless samples in a series of growth cabinet, glasshouse and field experiments. However, up to 11% of samples with and without lesions and from which P. cinnamomi was not initially isolated contained viable pathogen after leaching the plant material in water over 9 days. This indicates that the pathogen could be present as dormant structures, such as chlamydospores, where dormancy needs to be broken for germination to occur, or fungistatic compounds in the tissue need to be removed to allow the pathogen to grow, or both. These results have important implications for disease diagnosis and management, disease-free certification and quarantine clearance. No clonal line of jarrah was found to be 100% resistant using different inoculation methods, environmental conditions and when challenged by individuals from a large range of P. cinnamomi isolates. Even the most promising RR line had individual replicates that were unable to contain lesions or died with time. This suggests that further screening work may be required using more isolates varying in their capacity to cause disease and a broader range of environmental conditions. Jarrah clonal lines that survive such rigorous screening could then be expected to survive planting out in a range of environments in the jarrah forest and rehabilitated bauxite minesites.
APA, Harvard, Vancouver, ISO, and other styles
6

Lucas, Anne. "Water stress and disease development in Eucalyptus marginata (jarrah) infected with Phytophthora cinnamomi." Murdoch University, 2003. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20040820.13290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Szota, Christopher. "Root morphology, photosynthesis, water relations and development of jarrah (Eucalyptus marginata) in response to soil constraints at restores bauxite mines in south-western Australia." University of Western Australia. School of Plant Biology, 2009. http://theses.library.uwa.edu.au/adt-WU2010.0058.

Full text
Abstract:
Bauxite mining is a major activity in the jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia. After mining, poor tree growth can occur in some areas. This thesis aimed to determine whether soil constraints, including reduced depth and compaction, were responsible for poor tree growth at low-quality restored bauxite mines. In particular, this study determined the response of jarrah root morphology, leaf-scale physiology and growth/development to soil constraints at two contrasting (low-quality and high-quality) restored bauxite-mine sites. Jarrah root excavations at a low-quality restored site revealed that deep-ripping equipment failed to penetrate the cemented lateritic subsoil, causing coarse roots to be restricted to the top 0.5 m of the soil profile, resulting in fewer and smaller jarrah trees. An adjacent area within the same mine pit (high-quality site) had a kaolinitic clay subsoil, which coarse roots were able to penetrate to the average ripping depth of 1.5 m. Impenetrable subsoil prevented development of taproots at the low-quality site, with trees instead producing multiple lateral and sinker roots. Trees in riplines, made by deep-ripping, at the high-quality site accessed the subsoil via a major taproot, while those on crests developed large lateral and sinker roots. Bauxite mining is a major activity in the jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia. After mining, poor tree growth can occur in some areas. This thesis aimed to determine whether soil constraints, including reduced depth and compaction, were responsible for poor tree growth at low-quality restored bauxite mines. In particular, this study determined the response of jarrah root morphology, leaf-scale physiology and growth/development to soil constraints at two contrasting (low-quality and high-quality) restored bauxite-mine sites. Jarrah root excavations at a low-quality restored site revealed that deep-ripping equipment failed to penetrate the cemented lateritic subsoil, causing coarse roots to be restricted to the top 0.5 m of the soil profile, resulting in fewer and smaller jarrah trees. An adjacent area within the same mine pit (high-quality site) had a kaolinitic clay subsoil, which coarse roots were able to penetrate to the average ripping depth of 1.5 m. Impenetrable subsoil prevented development of taproots at the low-quality site, with trees instead producing multiple lateral and sinker roots. Trees in riplines, made by deep-ripping, at the high-quality site accessed the subsoil via a major taproot, while those on crests developed large lateral and sinker roots.
APA, Harvard, Vancouver, ISO, and other styles
8

Hayward, Matt School of Biological Earth &amp Environmental Science UNSW. "The ecology of the quokka (Setonix brachyurus) (Macropodidae: Marsupialia) in the Northern Jarrah Forest of Australia." Awarded by:University of New South Wales. School of Biological, Earth and Environmental Science, 2002. http://handle.unsw.edu.au/1959.4/18768.

Full text
Abstract:
The quokka (Setonix brachyurus Quoy & Gaimard 1830) is a medium-sized, macropodid marsupial that is endemic to the mesic, south-western corner of Australia. While being a tourist icon on Rottnest Island, the species is threatened with extinction. It has been intensively studied on Rottnest Island in the 1960s and 1970s, however very little is known of its ecology on the mainland. Additionally the insular and mainland environments are extremely different suggesting that ecological differences between the two populations are likely. Consequently, this study sought to determine the basic autecology of the quokka and identify what factors have attributed to its threatened conservation status. The northern jarrah forest of Western Australia was selected as the study region due to it being at the northern limit of extant quokka distribution and because it was thought that the factors threatening the quokka would be exacerbated there. Fossil deposits suggest that the quokka originally occupied an area of approximately 49,000 km2 in the south-western corner of Australia. Historical literature show that they were widespread and abundant when Europeans colonised the region in 1829 but a noticeable and dramatic decline occurred a century later. The arrival of the red fox to the region coincided almost exactly with this decline and so it was probably ultimately responsible. Continued predation by both it and the feral cat are likely to have continued the decline, along with habitat destruction and modification through altered fire regimes. Specific surveys and literature searches show that since the 1950s, the area occupied by the quokka has declined by 45% and since 1990 by 29%. Based on the criteria of the IUCN (Hilton-Taylor 2000), the conservation status of the quokka should remain as vulnerable. An endangered status may be more applicable if the quokkas restriction to patches through its existence as a metapopulation is considered. Trapping of eight sites supporting quokka populations in the mid-1990s revealed three sites now locally extinct despite the ongoing, six year old, fox control programme. Another three are at serious risk of extinction. Extant population sizes ranged from one to 36 and population density ranged from 0.07 to 4.3 individuals per hectare. This is considered to be below the carrying capacity of each site. The overall quokka population size in the northern jarrah forest may be as low as 150 adult individuals, of which half are likely to be female. Even the largest extant populations are highly susceptible to stochastic extinction events. This small size was surprising considering the six year old, introduced predator control programme. Historically, the restriction to discrete habitat patches, the occasional inter-patch movement, the lack of correlation between the dynamics of each population and reports of frequent localised extinctions and colonisations suggest that the quokka population once existed as part of a classic metapopulation. The massive decline of the quokka in the 1930s pushed the metapopulation structure into a non-equilibrium state such that today, the extant populations are the terminal remnants of the original classic metapopulation. Wild mainland quokkas breed throughout the year. A significant reduction in the number of births occurs over summer and this coincides with a decline in female body weight. Despite this, the mainland quokka is relatively fecund and is able to wean two offspring per year. The level of recruitment from pouch young to independence was low and this may explain the apparent lack of population increase following the initiation of fox control. A total of 56 trapped quokkas were fitted with a radio collar. Mean home range size for quokkas was 6.39 ha with a core range of 1.21 ha and this was negatively related to population density. Male home ranges were larger than females but not significantly when the sexual size dimorphism was considered. Nocturnal ranges were larger than diurnal ranges reflecting nocturnal departures from the swamp refugia. Home range sizes varied seasonally, probably due to changes in the distance required to move to obtain sufficient nutrients and water over the dry summer compared to the wet winter and spring. Telemetry confirmed trapping results that showed no movement between swamps or populations. Home range centres shifted to the periphery of the swamp following the winter inundation and this may increase the species susceptibility to predation. The lack of dispersal is probably caused by quokka populations existing below carrying capacity and following selection for philopatry under the threat of predation for dispersing individuals. Without dispersal to recolonise or rescue unpopulated patches, the collapse of the original quokka metapopulation appears to have occurred. On a macrohabitat scale, the quokka in the northern jarrah forest is restricted to Agonis swamp shrubland habitats that form in the open, upper reaches of creek systems on the western side of the forest. This restriction was probably initially due to the high water requirements of the quokka but is likely to have been exacerbated by increased predation pressure since the arrival of the fox. On a microhabitat scale, the quokka is a habitat specialist, preferring early seral stage swamp habitats, probably for foraging, as part of a mosaic of old age swamp that provides refuge. Despite the six year old, introduced predator control programme, foxes and cats are still the major cause of mortality to quokkas. Road kills was the other identifiable cause. Individuals alive at the start of the study had an 81% chance of staying alive until the end. The likelihood of dying was minimised by grouping together with conspecifics, maximising home range size and maximising the time spent within the swampy refuge. Current rates of adult and juvenile survivorship should allow population recovery and so it seems pouch young mortality, reflected by low recruitment, has inhibited the anticipated population increase following predator control. The confounding effect of inadequate unbaited controls meant that little statistical evidence was available on the impact of introduced predators on the quokka, however the models provided support for earlier hypotheses of these. The presence of a quokka population at a site was related to the amount of poison baits delivered ??? reflecting predation pressure, the average age of the swamp and a mosaic of early and late seral stages within the swamp habitat. Recently burnt habitat is thought to provide food for quokkas and long unburnt habitat provides refuge from predation.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Jarrah – Western Australia"

1

Abbott, Ian. Ecology of jarrah (Eucalyptus marginata) in the northern jarrah forest of Western Australia. Perth, W.A: Dept. of Conservation and Land Management, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strelein, G. J. Site classification in the southern jarrah forest of Western Australia. Como, W.A: Dept. of Conservation and Land Management, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shearer, B. L. Jarrah dieback: The dynamics and management of Phytophthora cinnamomi in the jarrah (Eucalyptus marginata) forest of south-western Australia. Como, W.A: Dept. of Conservation and Land Management, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chin, Chen-Woo. Treatment and Service Performance of Jarrah, Karri and Marri Railway Sleepers in the South-west of Western Australia after 25 and 26 years. Melbourne: Commonwealth Scientific and Industrial Research Organization, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roger, Spencer, and Western Australia. Dept. of Conservation and Land Management., eds. Application of modern inventory techniques in the forests of Western Australia. Como, W.A: Dept. of Conservation and Land Management, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Western Australia. Dept. of Conservation and Land Management., ed. Management strategies for the South-West forests of Western Australia. Como, WA: Dept. of Conservation and Land Management, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Jarrah – Western Australia"

1

Abbott, Ian, and Neil Burrows. "Monitoring biodiversity in jarrah forest in south-west Western Australia: the Forestcheck initiative." In Conservation of Australia's Forest Fauna, 947–58. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cuccovia, Alex, and Adrianne Kinnear. "Acarine (mite) communities colonizing rehabilitated bauxite mine pits in the jarrah forest of Western Australia." In The Other 99%: The Conservation and Biodiversity of Invertebrates, 54–59. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1999. http://dx.doi.org/10.7882/rzsnsw.1999.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Craig, Michael D. "The value of unlogged buffers for vulnerable bird species in the jarrah forest of south-west Western Australia." In Conservation of Australia's Forest Fauna, 774–82. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Calver, Michael, and Grant Wardell-Johnson. "Sustained unsustainability? An evaluation of evidence for a history of overcutting in the jarrah forests of Western Australia and its consequences for fauna conservation." In Conservation of Australia's Forest Fauna, 94–114. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rhind, Susan G. "Direct impacts of logging and forest management on the brush-tailed phascogalePhascogale tapoatafa and other arboreal marsupials in a jarrah forest of Western Australia." In Conservation of Australia's Forest Fauna, 639–55. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brennan, Karl E. C., Melinda L. Moir, and Jonathan D. Majer. "Conservation and biodiversity of spiders in Western Australian jarrah forest: untangling multiple disturbance effects from burning and mining." In Conservation of Australia's Forest Fauna, 914–35. P.O. Box 20, Mosman NSW 2088: Royal Zoological Society of New South Wales, 2004. http://dx.doi.org/10.7882/fs.2004.914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bell, David T. "Seed-related Autecology in Restoration of Mined Jarrah Forest in Western Australia." In The Reconstruction of Disturbed Arid Lands, 5–33. Routledge, 2019. http://dx.doi.org/10.4324/9780429314216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Jarrah – Western Australia"

1

Grant, Carl. "Decommissioning Alcoa’s First Bauxite Mine in the Jarrah Forest of Western Australia ⎯ Cradle to Grave." In First International Seminar on Mine Closure. Australian Centre for Geomechanics, Perth, 2006. http://dx.doi.org/10.36487/acg_repo/605_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Standish, Rachel, Tim Morald, John Koch, Richard Hobbs, and Mark Tibbett. "Restoring Jarrah Forest after Bauxite Mining in Western Australia — The Effect of Fertilizer on Floristic Diversity and Composition." In Third International Seminar on Mine Closure. Australian Centre for Geomechanics, Perth, 2008. http://dx.doi.org/10.36487/acg_repo/852_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Worthington, Trudy, Matthew Braimbridge, and Stephen Vlahos. "When to Sow Your Seed for Optimal Forest Rehabilitation ⎯ Lessons from the Jarrah Forest of South Western Australia." In First International Seminar on Mine Closure. Australian Centre for Geomechanics, Perth, 2006. http://dx.doi.org/10.36487/acg_repo/605_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marshall, John K. "Water Economy of Macrozamia riedlei in the Jarrah (Eucalyptus marginata) Forest of Southwestern Western Australia." In CYCAD 2005. The New York Botanical Garden Press, 2007. http://dx.doi.org/10.21135/893274900.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography