Academic literature on the topic 'Jeffreys prior'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jeffreys prior.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jeffreys prior"
Poirier, Dale. "Jeffreys' prior for logit models." Journal of Econometrics 63, no. 2 (August 1994): 327–39. http://dx.doi.org/10.1016/0304-4076(93)01556-2.
Full textMillar, Russell B. "Reference priors for Bayesian fisheries models." Canadian Journal of Fisheries and Aquatic Sciences 59, no. 9 (September 1, 2002): 1492–502. http://dx.doi.org/10.1139/f02-108.
Full textZivot, Eric. "A Bayesian Analysis Of The Unit Root Hypothesis Within An Unobserved Components Model." Econometric Theory 10, no. 3-4 (August 1994): 552–78. http://dx.doi.org/10.1017/s0266466600008665.
Full textJournal, Baghdad Science. "Comparison of Maximum Likelihood and some Bayes Estimators for Maxwell Distribution based on Non-informative Priors." Baghdad Science Journal 10, no. 2 (June 2, 2013): 480–88. http://dx.doi.org/10.21123/bsj.10.2.480-488.
Full textRainey, Carlisle. "Dealing with Separation in Logistic Regression Models." Political Analysis 24, no. 3 (2016): 339–55. http://dx.doi.org/10.1093/pan/mpw014.
Full textKhooriphan, Wansiri, Sa-Aat Niwitpong, and Suparat Niwitpong. "Confidence Intervals for the Ratio of Variances of Delta-Gamma Distributions with Applications." Axioms 11, no. 12 (November 30, 2022): 689. http://dx.doi.org/10.3390/axioms11120689.
Full textJiang, Ruichao, Javad Tavakoli, and Yiqiang Zhao. "Weyl Prior and Bayesian Statistics." Entropy 22, no. 4 (April 20, 2020): 467. http://dx.doi.org/10.3390/e22040467.
Full textD’Andrea, Amanda M. E., Vera L. D. Tomazella, Hassan M. Aljohani, Pedro L. Ramos, Marco P. Almeida, Francisco Louzada, Bruna A. W. Verssani, Amanda B. Gazon, and Ahmed Z. Afify. "Objective bayesian analysis for multiple repairable systems." PLOS ONE 16, no. 11 (November 23, 2021): e0258581. http://dx.doi.org/10.1371/journal.pone.0258581.
Full textUhlig, Harald. "On Jeffreys Prior when Using the Exact Likelihood Function." Econometric Theory 10, no. 3-4 (August 1994): 633–44. http://dx.doi.org/10.1017/s0266466600008707.
Full textKwek, L. C., C. H. Oh, and Xiang-Bin Wang. "Quantum Jeffreys prior for displaced squeezed thermal states." Journal of Physics A: Mathematical and General 32, no. 37 (September 6, 1999): 6613–18. http://dx.doi.org/10.1088/0305-4470/32/37/310.
Full textDissertations / Theses on the topic "Jeffreys prior"
Hornik, Kurt, and Bettina Grün. "On conjugate families and Jeffreys priors for von Mises-Fisher distributions." Elsevier, 2013. http://dx.doi.org/10.1016/j.jspi.2012.11.003.
Full textBioche, Christèle. "Approximation de lois impropres et applications." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22626/document.
Full textThe purpose of this thesis is to study the approximation of improper priors by proper priors. We define a convergence mode on the positive Radon measures for which a sequence of probability measures could converge to an improper limiting measure. This convergence mode, called q-vague convergence, is independant from the statistical model. It explains the origin of the Jeffreys-Lindley paradox. Then, we focus on the estimation of the size of a population. We consider the removal sampling model. We give necessary and sufficient conditions on the hyperparameters in order to have proper posterior distributions and well define estimate of abundance. In the light of the q-vague convergence, we show that the use of vague priors is not appropriate in removal sampling since the estimates obtained depend crucially on hyperparameters
Nogarotto, Danilo Covaes 1987. "Inferência bayesiana em modelos de regressão beta e beta inflacionados." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306790.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-23T07:11:52Z (GMT). No. of bitstreams: 1 Nogarotto_DaniloCovaes_M.pdf: 12817108 bytes, checksum: 0e5e0de542d707f4023f5ef62dc40a82 (MD5) Previous issue date: 2013
Resumo: No presente trabalho desenvolvemos ferramentas de inferência bayesiana para modelos de regressão beta e beta inflacionados, em relação à estimação paramétrica e diagnóstico. Trabalhamos com modelos de regressão beta não inflacionados, inflacionados em zero ou um e inflacionados em zero e um. Devido à impossibilidade de obtenção analítica das posteriores de interesse, tais ferramentas foram desenvolvidas através de algoritmos MCMC. Para os parâmetros da estrutura de regressão e para o parâmetro de precisão exploramos a utilização de prioris comumente empregadas em modelos de regressão, bem como prioris de Jeffreys e de Jeffreys sob independência. Para os parâmetros das componentes discretas, consideramos prioris conjugadas. Realizamos diversos estudos de simulação considerando algumas situações de interesse prático com o intuito de comparar as estimativas bayesianas com as frequentistas e também de estudar a sensibilidade dos modelos _a escolha de prioris. Um conjunto de dados da área psicométrica foi analisado para ilustrar o potencial do ferramental desenvolvido. Os resultados indicaram que há ganho ao se considerar modelos que contemplam as observações inflacionadas ao invés de transformá-las a fim de utilizar modelos não inflacionados
Abstract: In the present work we developed Bayesian tools, concerning parameter estimation and diagnostics, for noninflated, zero inflated, one inflated and zero-one inflated beta regression models. Due to the impossibility of obtaining the posterior distributions of interest, analytically, all these tools were developed through MCMC algorithms. For the regression and precision parameters we exploited the using of prior distributions commonly considered in regression models as well as Jeffreys and independence Jeffreys priors. For the parameters related to the discrete components, we considered conjugate prior distributions. We performed simulation studies, considering some situations of practical interest, in order to compare the Bayesian and frequentist estimates as well as to evaluate the sensitivity of the models to the prior choice. A psychometric real data set was analyzed to illustrate the performance of the developed tools. The results indicated that there is an overall improvement in using models that consider the inflated observations compared to transforming these observations in order to use noninflated models
Mestrado
Estatistica
Mestre em Estatística
MACARO, CHRISTIAN. "Topics on unobserved component detection for time series." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/691.
Full textGrazian, Clara. "Contributions aux méthodes bayésiennes approchées pour modèles complexes." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED001.
Full textRecently, the great complexity of modern applications, for instance in genetics,computer science, finance, climatic science etc., has led to the proposal of newmodels which may realistically describe the reality. In these cases, classical MCMCmethods fail to approximate the posterior distribution, because they are too slow toinvestigate the full parameter space. New algorithms have been proposed to handlethese situations, where the likelihood function is unavailable. We will investigatemany features of complex models: how to eliminate the nuisance parameters fromthe analysis and make inference on key quantities of interest, both in a Bayesianand not Bayesian setting, and how to build a reference prior
Wang, Guojun. "Some Bayesian Methods in the Estimation of Parameters in the Measurement Error Models and Crossover Trial." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076852153.
Full textLi, Zhonggai. "Objective Bayesian Analysis of Kullback-Liebler Divergence of two Multivariate Normal Distributions with Common Covariance Matrix and Star-shape Gaussian Graphical Model." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28121.
Full textPh. D.
Heard, Astrid. "APPLICATION OF STATISTICAL METHODS IN RISK AND RELIABILITY." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2602.
Full textPh.D.
Department of Mathematics
Arts and Sciences
Mathematics
Guo, Yixuan. "Bayesian Model Selection for Poisson and Related Models." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310177.
Full textSouza, Aline Campos Reis de. "Modelos de regressão linear heteroscedásticos com erros t-Student : uma abordagem bayesiana objetiva." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7540.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:59:56Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T20:00:01Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Made available in DSpace on 2016-09-27T20:00:08Z (GMT). No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) Previous issue date: 2016-02-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Je reys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Je reys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuicões a priori de Je reys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposicão de heteoscedasticidade. Mostramos que a distribuiçãoo a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori e própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber e desenvolvida com analidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais e utilizado para o ajuste do modelo proposto.
Books on the topic "Jeffreys prior"
Bauman, Thomas. Holding the Stroll. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252038365.003.0005.
Full textBook chapters on the topic "Jeffreys prior"
Firth, David. "Bias reduction, the Jeffreys prior and GLIM." In Advances in GLIM and Statistical Modelling, 91–100. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2952-0_15.
Full textDasgupta, Ratan. "Coconut Plant Growth, Mahalanobis Distance, and Jeffreys’ Prior." In Growth Curve Models and Applications, 115–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63886-7_5.
Full textYanagimoto, Takemi, and Toshio Ohnishi. "A Characterization of Jeffreys’ Prior with Its Implications to Likelihood Inference." In Pioneering Works on Distribution Theory, 103–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9663-6_6.
Full textGrazian, Clara, and Christian P. Robert. "Jeffreys’ Priors for Mixture Estimation." In Springer Proceedings in Mathematics & Statistics, 37–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16238-6_4.
Full textFirth, D. "Generalized Linear Models and Jeffreys Priors: An Iterative Weighted Least-Squares Approach." In Computational Statistics, 553–57. Heidelberg: Physica-Verlag HD, 1992. http://dx.doi.org/10.1007/978-3-662-26811-7_76.
Full textFévotte, Cédric, and Simon J. Godsill. "Blind Separation of Sparse Sources Using Jeffrey’s Inverse Prior and the EM Algorithm." In Independent Component Analysis and Blind Signal Separation, 593–600. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11679363_74.
Full textEifert, Erin P., Kalanka P. Jayalath, and Raj S. Chhikara. "Survival Analysis for the Inverse Gaussian Distribution: Natural Conjugate and Jeffrey’s Priors." In Emerging Topics in Statistics and Biostatistics, 279–98. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-030-88658-5_13.
Full textTao, Kaiyuan, Chuang Wang, Junli Xia, Yanfang Wang, and Weike Du. "Michael Jeffrey Jordan v. Trademark Review and Adjudication Board of the State Administration for Industry and Commerce of the People’s Republic of China & Jordan Sports Co., Ltd. (Administrative Disputes over Trademark)—Right to One’s Name May Constitute “Prior Right” Protected by Trademark Law." In Library of Selected Cases from the Chinese Court, 17–31. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0342-9_2.
Full textDu, Weike, and Xian Tang. "Michael Jeffrey Jordan v. Trademark Review and Adjudication Board of the State Administration for Industry and Commerce of the People's Republic of China and Qiaodan Sports Products Co., Ltd. [Administrative Dispute over (Graphics) Trademark Infringement]: Requirements for Protecting the Prior Right of Image in Trademark Administrative Cases." In Library of Selected Cases from the Chinese Court, 315–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9136-5_32.
Full text"Appendix D Jeffreys Prior." In Practical Applications of Bayesian Reliability, 295–97. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119287995.app4.
Full textConference papers on the topic "Jeffreys prior"
Motomura, Yoichi. "Jeffreys' prior for layered neural networks." In SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, edited by Steven K. Rogers and Dennis W. Ruck. SPIE, 1995. http://dx.doi.org/10.1117/12.205194.
Full textNguyen, Tam, Raviv Raich, and Phung Lai. "Jeffreys prior regularization for logistic regression." In 2016 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2016. http://dx.doi.org/10.1109/ssp.2016.7551820.
Full text