Dissertations / Theses on the topic 'Jeffreys prior'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Jeffreys prior.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hornik, Kurt, and Bettina Grün. "On conjugate families and Jeffreys priors for von Mises-Fisher distributions." Elsevier, 2013. http://dx.doi.org/10.1016/j.jspi.2012.11.003.
Full textBioche, Christèle. "Approximation de lois impropres et applications." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22626/document.
Full textThe purpose of this thesis is to study the approximation of improper priors by proper priors. We define a convergence mode on the positive Radon measures for which a sequence of probability measures could converge to an improper limiting measure. This convergence mode, called q-vague convergence, is independant from the statistical model. It explains the origin of the Jeffreys-Lindley paradox. Then, we focus on the estimation of the size of a population. We consider the removal sampling model. We give necessary and sufficient conditions on the hyperparameters in order to have proper posterior distributions and well define estimate of abundance. In the light of the q-vague convergence, we show that the use of vague priors is not appropriate in removal sampling since the estimates obtained depend crucially on hyperparameters
Nogarotto, Danilo Covaes 1987. "Inferência bayesiana em modelos de regressão beta e beta inflacionados." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306790.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-23T07:11:52Z (GMT). No. of bitstreams: 1 Nogarotto_DaniloCovaes_M.pdf: 12817108 bytes, checksum: 0e5e0de542d707f4023f5ef62dc40a82 (MD5) Previous issue date: 2013
Resumo: No presente trabalho desenvolvemos ferramentas de inferência bayesiana para modelos de regressão beta e beta inflacionados, em relação à estimação paramétrica e diagnóstico. Trabalhamos com modelos de regressão beta não inflacionados, inflacionados em zero ou um e inflacionados em zero e um. Devido à impossibilidade de obtenção analítica das posteriores de interesse, tais ferramentas foram desenvolvidas através de algoritmos MCMC. Para os parâmetros da estrutura de regressão e para o parâmetro de precisão exploramos a utilização de prioris comumente empregadas em modelos de regressão, bem como prioris de Jeffreys e de Jeffreys sob independência. Para os parâmetros das componentes discretas, consideramos prioris conjugadas. Realizamos diversos estudos de simulação considerando algumas situações de interesse prático com o intuito de comparar as estimativas bayesianas com as frequentistas e também de estudar a sensibilidade dos modelos _a escolha de prioris. Um conjunto de dados da área psicométrica foi analisado para ilustrar o potencial do ferramental desenvolvido. Os resultados indicaram que há ganho ao se considerar modelos que contemplam as observações inflacionadas ao invés de transformá-las a fim de utilizar modelos não inflacionados
Abstract: In the present work we developed Bayesian tools, concerning parameter estimation and diagnostics, for noninflated, zero inflated, one inflated and zero-one inflated beta regression models. Due to the impossibility of obtaining the posterior distributions of interest, analytically, all these tools were developed through MCMC algorithms. For the regression and precision parameters we exploited the using of prior distributions commonly considered in regression models as well as Jeffreys and independence Jeffreys priors. For the parameters related to the discrete components, we considered conjugate prior distributions. We performed simulation studies, considering some situations of practical interest, in order to compare the Bayesian and frequentist estimates as well as to evaluate the sensitivity of the models to the prior choice. A psychometric real data set was analyzed to illustrate the performance of the developed tools. The results indicated that there is an overall improvement in using models that consider the inflated observations compared to transforming these observations in order to use noninflated models
Mestrado
Estatistica
Mestre em Estatística
MACARO, CHRISTIAN. "Topics on unobserved component detection for time series." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/691.
Full textGrazian, Clara. "Contributions aux méthodes bayésiennes approchées pour modèles complexes." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED001.
Full textRecently, the great complexity of modern applications, for instance in genetics,computer science, finance, climatic science etc., has led to the proposal of newmodels which may realistically describe the reality. In these cases, classical MCMCmethods fail to approximate the posterior distribution, because they are too slow toinvestigate the full parameter space. New algorithms have been proposed to handlethese situations, where the likelihood function is unavailable. We will investigatemany features of complex models: how to eliminate the nuisance parameters fromthe analysis and make inference on key quantities of interest, both in a Bayesianand not Bayesian setting, and how to build a reference prior
Wang, Guojun. "Some Bayesian Methods in the Estimation of Parameters in the Measurement Error Models and Crossover Trial." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076852153.
Full textLi, Zhonggai. "Objective Bayesian Analysis of Kullback-Liebler Divergence of two Multivariate Normal Distributions with Common Covariance Matrix and Star-shape Gaussian Graphical Model." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/28121.
Full textPh. D.
Heard, Astrid. "APPLICATION OF STATISTICAL METHODS IN RISK AND RELIABILITY." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2602.
Full textPh.D.
Department of Mathematics
Arts and Sciences
Mathematics
Guo, Yixuan. "Bayesian Model Selection for Poisson and Related Models." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439310177.
Full textSouza, Aline Campos Reis de. "Modelos de regressão linear heteroscedásticos com erros t-Student : uma abordagem bayesiana objetiva." Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/7540.
Full textApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T19:59:56Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-27T20:00:01Z (GMT) No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5)
Made available in DSpace on 2016-09-27T20:00:08Z (GMT). No. of bitstreams: 1 DissACRS.pdf: 1390452 bytes, checksum: a5365fdbf745228c0174f2643b3f7267 (MD5) Previous issue date: 2016-02-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work , we present an extension of the objective bayesian analysis made in Fonseca et al. (2008), based on Je reys priors for linear regression models with Student t errors, for which we consider the heteroscedasticity assumption. We show that the posterior distribution generated by the proposed Je reys prior, is proper. Through simulation study , we analyzed the frequentist properties of the bayesian estimators obtained. Then we tested the robustness of the model through disturbances in the response variable by comparing its performance with those obtained under another prior distributions proposed in the literature. Finally, a real data set is used to analyze the performance of the proposed model . We detected possible in uential points through the Kullback -Leibler divergence measure, and used the selection model criterias EAIC, EBIC, DIC and LPML in order to compare the models.
Neste trabalho, apresentamos uma extensão da análise bayesiana objetiva feita em Fonseca et al. (2008), baseada nas distribuicões a priori de Je reys para o modelo de regressão linear com erros t-Student, para os quais consideramos a suposicão de heteoscedasticidade. Mostramos que a distribuiçãoo a posteriori dos parâmetros do modelo regressão gerada pela distribuição a priori e própria. Através de um estudo de simulação, avaliamos as propriedades frequentistas dos estimadores bayesianos e comparamos os resultados com outras distribuições a priori encontradas na literatura. Além disso, uma análise de diagnóstico baseada na medida de divergência Kullback-Leiber e desenvolvida com analidade de estudar a robustez das estimativas na presença de observações atípicas. Finalmente, um conjunto de dados reais e utilizado para o ajuste do modelo proposto.
Bunouf, Pierre. "Lois bayésiennes a priori dans un plan binomial séquentiel." Phd thesis, Université de Rouen, 2006. http://tel.archives-ouvertes.fr/tel-00539868.
Full textSouza, Isaac Jales Costa. "Estima??o bayesiana no modelo pot?ncia normal bimodal assim?trico." PROGRAMA DE P?S-GRADUA??O EM MATEM?TICA APLICADA E ESTAT?STICA, 2016. https://repositorio.ufrn.br/jspui/handle/123456789/21722.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-01-23T13:11:35Z (GMT) No. of bitstreams: 1 IsaacJalesCostaSouza_DISSERT.pdf: 808186 bytes, checksum: 0218f6e40a4dfea5b56a9d90f17e0bfb (MD5)
Made available in DSpace on 2017-01-23T13:11:35Z (GMT). No. of bitstreams: 1 IsaacJalesCostaSouza_DISSERT.pdf: 808186 bytes, checksum: 0218f6e40a4dfea5b56a9d90f17e0bfb (MD5) Previous issue date: 2016-01-28
Neste trabalho ? apresentada uma abordagem bayesiana dos modelos pot?ncia normal bimodal (PNB) e pot?ncia normal bimodal assim?trico (PNBA). Primeiramente, apresentamos o modelo PNB e especificamos para este prioris n?o informativas e informativas do par?metroque concentra a bimodalidade (?). Em seguida, obtemos a distribui??o a posteriori pelo m?todo MCMC, o qual testamos a viabilidade de seu uso a partir de um diagn?stico de converg?ncia. Depois, utilizamos diferentes prioris informativas para ? e fizemos a an?lise de sensibilidadecom o intuito de avaliar o efeito da varia??o dos hiperpar?metros na distribui??o a posteriori. Tamb?m foi feita uma simula??o para avaliar o desempenho do estimador bayesiano utilizando prioris informativas. Constatamos que a estimativa da moda a posteriori apresentou em geralresultados melhores quanto ao erro quadratico m?dio (EQM) e vi?s percentual (VP) quando comparado ao estimador de m?xima verossimilhan?a. Uma aplica??o com dados bimodais reais foi realizada. Por ?ltimo, introduzimos o modelo de regress?o linear com res?duos PNB. Quanto ao modelo PNBA, tamb?m especificamos prioris informativas e n?o informativas para os par?metros de bimodalidade e assimetria. Fizemos o diagn?stico de converg?ncia para o m?todo MCMC, que tamb?m foi utilizado para obter a distribui??o a posteriori. Fizemos uma an?lise de sensibilidade, aplicamos dados reais no modelo e introduzimos o modelo de regress?o linear com res?duos PNBA.
In this paper it is presented a Bayesian approach to the bimodal power-normal (BPN) models and the bimodal asymmetric power-normal (BAPN). First, we present the BPN model, specifying its non-informative and informative parameter ? (bimodality). We obtain the posterior distribution by MCMC method, whose feasibility of use we tested from a convergence diagnose. After that, We use different informative priors for ? and we do a sensitivity analysis in order to evaluate the effect of hyperparameters variation on the posterior distribution. Also, it is performed a simulation to evaluate the performance of the Bayesian estimator using informative priors. We noted that the Bayesian method shows more satisfactory results when compared to the maximum likelihood method. It is performed an application with bimodal data. Finally, we introduce the linear regression model with BPN error. As for the BAPN model we also specify informative and uninformative priors for bimodality and asymmetry parameters. We do the MCMC Convergence Diagnostics, which is also used to obtain the posterior distribution. We do a sensitivity analysis, applying actual data in the model and we introducing the linear regression model with PNBA error.
Silva, Ricardo Gonçalves da. ""Testes de hipótese e critério bayesiano de seleção de modelos para séries temporais com raiz unitária"." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19082004-163615/.
Full textTesting for unit root hypothesis in non stationary autoregressive models has been a research topic disseminated along many academic areas. As a first step for approaching this issue, this dissertation includes an extensive review highlighting the main results provided by Classical and Bayesian inferences methods. Concerning Classical approach, the role of brownian motion is discussed in a very detailed way, clearly emphasizing its application for obtaining good asymptotic statistics when we are testing for the existence of a unit root in a time series. Alternatively, for Bayesian approach, a detailed discussion is also introduced in the main text. Then, exploring an empirical façade of this dissertation, we implemented a comparative study for testing unit root based on a posteriori model's parameter density probability, taking into account the following a priori densities: Flat, Jeffreys, Normal and Beta. The inference is based on the Metropolis-Hastings algorithm and on the Monte Carlo Markov Chains (MCMC) technique. Simulated time series are used for calculating size, power and confidence intervals for the developed unit root hypothesis test. Finally, we proposed a Bayesian criterion for selecting models based on the same a priori distributions used for developing the same hypothesis tests. Obviously, both procedures are empirically illustrated through application to macroeconomic time series.
Tuyl, Frank Adrianus Wilhelmus Maria. "Estimation of the Binomial parameter: in defence of Bayes (1763)." Thesis, 2007. http://hdl.handle.net/1959.13/25730.
Full textInterval estimation of the Binomial parameter è, representing the true probability of a success, is a problem of long standing in statistical inference. The landmark work is by Bayes (1763) who applied the uniform prior to derive the Beta posterior that is the normalised Binomial likelihood function. It is not well known that Bayes favoured this ‘noninformative’ prior as a result of considering the observable random variable x as opposed to the unknown parameter è, which is an important difference. In this thesis we develop additional arguments in favour of the uniform prior for estimation of è. We start by describing the frequentist and Bayesian approaches to interval estimation. It is well known that for common continuous models, while different in interpretation, frequentist and Bayesian intervals are often identical, which is directly related to the existence of a pivotal quantity. The Binomial model, and its Poisson sister also, lack a pivotal quantity, despite having sufficient statistics. Lack of a pivotal quantity is the reason why there is no consensus on one particular estimation method, more so than its discreteness: frequentist (unconditional) coverage depends on è. Exact methods guarantee minimum coverage to be at least equal to nominal and approximate methods aim for mean coverage to be close to nominal. We agree with what seems like the majority of frequentists, that exact methods are too conservative in practice, and show additional undesirable properties. This includes more recent ‘short’ exact intervals. We argue that Bayesian intervals based on noninformative priors are preferable to the family of frequentist approximate intervals, some of which are wider than exact intervals for particular data values. A particular property of the interval based on the uniform prior is that its mean coverage is exactly equal to nominal. However, once committed to the Bayesian approach there is no denying that the current preferred choice, by ‘objective’ Bayesians, is the U-shaped Jeffreys prior which results from various methods aimed at finding noninformative priors. The most successful such method seems to be reference analysis which has led to sensible priors in previously unsolved problems, concerning multiparameter models that include ‘nuisance’ parameters. However, we argue that there is a class of models for which the Jeffreys/reference prior may be suboptimal and that in the case of the Binomial distribution the requirement of a uniform prior predictive distribution leads to a more reasonable ‘consensus’ prior.
Tuyl, Frank Adrianus Wilhelmus Maria. "Estimation of the Binomial parameter: in defence of Bayes (1763)." 2007. http://hdl.handle.net/1959.13/25730.
Full textInterval estimation of the Binomial parameter è, representing the true probability of a success, is a problem of long standing in statistical inference. The landmark work is by Bayes (1763) who applied the uniform prior to derive the Beta posterior that is the normalised Binomial likelihood function. It is not well known that Bayes favoured this ‘noninformative’ prior as a result of considering the observable random variable x as opposed to the unknown parameter è, which is an important difference. In this thesis we develop additional arguments in favour of the uniform prior for estimation of è. We start by describing the frequentist and Bayesian approaches to interval estimation. It is well known that for common continuous models, while different in interpretation, frequentist and Bayesian intervals are often identical, which is directly related to the existence of a pivotal quantity. The Binomial model, and its Poisson sister also, lack a pivotal quantity, despite having sufficient statistics. Lack of a pivotal quantity is the reason why there is no consensus on one particular estimation method, more so than its discreteness: frequentist (unconditional) coverage depends on è. Exact methods guarantee minimum coverage to be at least equal to nominal and approximate methods aim for mean coverage to be close to nominal. We agree with what seems like the majority of frequentists, that exact methods are too conservative in practice, and show additional undesirable properties. This includes more recent ‘short’ exact intervals. We argue that Bayesian intervals based on noninformative priors are preferable to the family of frequentist approximate intervals, some of which are wider than exact intervals for particular data values. A particular property of the interval based on the uniform prior is that its mean coverage is exactly equal to nominal. However, once committed to the Bayesian approach there is no denying that the current preferred choice, by ‘objective’ Bayesians, is the U-shaped Jeffreys prior which results from various methods aimed at finding noninformative priors. The most successful such method seems to be reference analysis which has led to sensible priors in previously unsolved problems, concerning multiparameter models that include ‘nuisance’ parameters. However, we argue that there is a class of models for which the Jeffreys/reference prior may be suboptimal and that in the case of the Binomial distribution the requirement of a uniform prior predictive distribution leads to a more reasonable ‘consensus’ prior.