Academic literature on the topic 'Jet spinning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jet spinning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jet spinning"
MASUI, TOSHITSUGU, TAKAYUKI OKAWA, and KOZO TOMIITA. "Air Jet Spinning." Sen'i Gakkaishi 49, no. 7 (1993): P256—P262. http://dx.doi.org/10.2115/fiber.49.7_p256.
Full textWang, Xiu Zhi. "The Preliminary Study on Air-Jet Spinning Spun." Applied Mechanics and Materials 138-139 (November 2011): 1294–95. http://dx.doi.org/10.4028/www.scientific.net/amm.138-139.1294.
Full textHan, Chenchen, Wenliang Xue, Longdi Cheng, and Zhuanyong Zou. "Theoretical analysis of the yarn fracture mechanism of self-twist jet vortex spinning." Textile Research Journal 87, no. 11 (August 4, 2016): 1394–402. http://dx.doi.org/10.1177/0040517516652352.
Full textWang, Xungai, Menghe Miao, and Yanlai How. "Studies of JetRing Spinning Part I: Reducing Yarn Hairiness with the JetRing." Textile Research Journal 67, no. 4 (April 1997): 253–58. http://dx.doi.org/10.1177/004051759706700403.
Full textHÜSEYİN GAZ, TÜRKSOY, AKKAYA TUĞBA, VURUŞKAN DENİZ, and ÜSTÜNTAĞ SÜMEYYE. "A comparative analysis of air-jet yarn properties with the properties of ring spun yarns." Industria Textila 69, no. 01 (March 1, 2018): 11–16. http://dx.doi.org/10.35530/it.069.01.1419.
Full textEl-Sayed, Hosam, Claudia Vineis, Alessio Varesano, Salwa Mowafi, Riccardo Andrea Carletto, Cinzia Tonetti, and Marwa Abou Taleb. "A critique on multi-jet electrospinning: State of the art and future outlook." Nanotechnology Reviews 8, no. 1 (November 12, 2019): 236–45. http://dx.doi.org/10.1515/ntrev-2019-0022.
Full textBasu, A. "PROGRESS IN AIR-JET SPINNING." Textile Progress 29, no. 3 (September 1999): 1–38. http://dx.doi.org/10.1080/00405169908688877.
Full textLiu, Hong-Yan, Zhi-Min Li, Yan-Ju Yao, and Frank Ko. "Analytical modelling of dry-jet wet spinning." Thermal Science 21, no. 4 (2017): 1807–12. http://dx.doi.org/10.2298/tsci160110072l.
Full textSawhney, A. P. S., and L. B. Kimmel. "Air and Ring Combination in Tandem Spinning." Textile Research Journal 67, no. 3 (March 1997): 217–23. http://dx.doi.org/10.1177/004051759706700310.
Full textLiu, Yong, Zhao Xiang Liu, Liang Deng, Ke Jian Wang, and Wei Min Yang. "Effect of Different Factors on Falling Process of Melt Electrospinning Jet." Materials Science Forum 745-746 (February 2013): 407–11. http://dx.doi.org/10.4028/www.scientific.net/msf.745-746.407.
Full textDissertations / Theses on the topic "Jet spinning"
Rajamanickam, Rangaswamy. "Studies on fiber-process-structure-property relationships in air-jet spinning." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/8661.
Full textBaqui, M. Abdul. "A study of the properties and the structure of long-staple air-jet wrap-spun yarn." Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329493.
Full textJíša, Martin. "Konstrukce brzdičky příze s mechanickým přidržováním stroje Air-Jet." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241705.
Full textChasmawala, Rasesh Jayantilal. "Studies on the effect of spinning parameters on the structure and properties of air jet spun yarns." Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/8481.
Full textGHOSH, MONOJ. "Fabrication of Inorganic Oxide Nanofibers Using Gas Jet Fiber Spinning Process and Their Applications in Photocatalytic Oxidation." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1478726324293037.
Full textLallave-Cortes, Jorge C. "Numerical heat transfer during partially-confined, confined, and free liquid jet impingement with rotation and chemical mechanical planarization process modeling." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0002968.
Full textFrançois, Sébastien. "Optimisation de la structure textile des prothèses vasculaires pour un développement en monocouche des cellules endotheliales." Phd thesis, Université de Haute Alsace - Mulhouse, 2009. http://tel.archives-ouvertes.fr/tel-00590477.
Full textAndersson, Sofia. "Influence of metal ions on lignin-based carbon fiber quality." Thesis, Luleå tekniska universitet, Industriell miljö- och processteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-65971.
Full textMiao, Menghe. "The insertion of twist into yarns by means of air-jets." Thesis, University of Leeds, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329209.
Full textBengtsson, Andreas. "Carbon fibres from lignin-cellulose precursors." Licentiate thesis, KTH, Träkemi och massateknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244756.
Full textDet ligger i människans natur att hitta lösningar på komplexa tekniska problem, samt att alltid sträva efter förbättringar. Utvecklingen av nya material är inget undantag. Ett av flera material utvecklade av människan är kolfiber. Dess utmärkta mekaniska egenskaper samt låga densitet har gjort det attraktivt som förstärkningsmaterial i lättviktskompositer. Det höga priset på kolfiber, vilket härstammar ur en kostsam framställningsprocess, har förhindrat en mer utbredd användning i exempelvis bilindustrin. Det dominerande råmaterialet för kolfiberframställning är petroleumbaserad polyacrylonitril (PAN). Användandet av fossila råvaror och det höga priset på kolfiber förklarar den starka drivkraften att hitta billigare och förnyelsebara alternativ. Lignin och cellulosa är förnyelsebara makromolekyler som finns tillgängliga i stora kvantiteter. Det höga kolinnehållet i lignin gör det mycket attraktivt som råvara för kolfiberframställning, men dess heterogena struktur ger en kolfiber med otillräckliga mekaniska egenskaper. Däremot har cellulosa en molekylär orientering som är önskvärd vid framställning av kolfiber, men dess låga kolinehåll ger ett lågt processutbyte som i sin tur bidrar till höga produktionskostnader. Det här arbetet visar att många av de problem som uppstår med kolfiber från respektive råvara kan kringgås genom att utgå från blandningar av desamma. Prekursorfibrer från blandningar av kraftlignin och kraftmassa från barrved tillverkade med luftgapsspinning konverterades till kolfiber. Utbytet för kolfibrerna som framställdes var mycket högre än vid framställning från endast cellulosa. Ofraktionerat barrvedslignin och kraftmassa av papperskvalitet presterade lika bra som de dyrare retentatligninen och dissolvingmassan, vilket är fördelaktigt ur ett ekonomiskt perspektiv. Stabilisering är det mest tidskrävande processteget i kolfibertillverkning. I det här arbetet visades det att prekursorfibrerna kunde stabiliseras på kortare än två timmar, eller direktkarboniseras utan någon sammansmältning av fibrerna. Detta indikerar att en tidseffektiv produktion kan vara möjligt. Impregnering av prekursorfibrerna med ammoniumdivätefosfat ökade utbytet avsevärt, men med lägre mekaniska egenskaper som bieffekt. Kolfibrernas mekaniska egenskaper ökade vid en diameterreduktion. En kort oxidativ stabilisering under två timmar i kombination med tunna prekursorfibrer gav kolfiber med en elasticitetsmodul på 76 GPa och dragstyrka på 1070 MPa. Att göra kolfiber från blandningar av lignin och cellulosa är ett lovande koncept om det höga utbytet (39%), den korta stabiliseringstiden samt de lovande mekaniska egenskaperna tas i beaktande.
QC 20190226
Books on the topic "Jet spinning"
Basu, A. Progress in air-jet spinning: A critical appreciation of recent developments. Manchester: Textile Institute, 1999.
Find full textITWM, Kaiserslautern Fraunhofer, and Manuel Wieland. On Modeling and Simulation of Industrial Fiber Spinning Processes : Diffusive Effects, Electrified Jets and Turbulent Airflows: Diffusive Effects, Electrified Jets and Turbulent Airflows. Fraunhofer IRB Verlag, 2020.
Find full textBook chapters on the topic "Jet spinning"
Gooch, Jan W. "Jet Spinning." In Encyclopedic Dictionary of Polymers, 407. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6593.
Full textGooch, Jan W. "Air Jet Spinning." In Encyclopedic Dictionary of Polymers, 24. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_358.
Full textMeco, H., and Ralph E. Napolitano. "Upper-Bound Velocity Limit for Free-Jet Melt Spinning." In Materials Science Forum, 3371–76. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.3371.
Full textEggers, Jens, and Michael P. Brenner. "Spinning Jets." In Fluid Mechanics and Its Applications, 185–93. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1996-4_17.
Full textNarayan, Ramesh, Jeffrey E. McClintock, and Alexander Tchekhovskoy. "Energy Extraction from Spinning Black Holes Via Relativistic Jets." In General Relativity, Cosmology and Astrophysics, 523–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06349-2_25.
Full text"Jet spinning." In Encyclopedic Dictionary of Polymers, 548. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_6484.
Full text"Air jet spinning." In Encyclopedic Dictionary of Polymers, 34. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-30160-0_347.
Full textAngelova, R. A. "Air-jet spinning." In Advances in Yarn Spinning Technology, 315–44. Elsevier, 2010. http://dx.doi.org/10.1533/9780857090218.2.315.
Full text"Time-Accurate Simulations of Synthetic Jet-Based Flow Control for a Spinning Projectile." In Applications of Circulation Control Technology, 579–98. Reston ,VA: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/5.9781600866838.0579.0598.
Full textSista, Deepthi. "New Perspective of Nano Fibers: Synthesis and Applications." In Nanofibers - Synthesis, Properties and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97460.
Full textConference papers on the topic "Jet spinning"
Sinatra, Nina R., Johan U. Lind, and Kevin Kit Parker. "Fabricating multi-material nanofabrics using rotary jet spinning." In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017. http://dx.doi.org/10.1109/nano.2017.8117499.
Full textLallave, Jorge, and Muhammad Rahman. "Cooling of a Spinning Disk by Confined Liquid Jet Impingement." In 3rd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5681.
Full textSCHIRING, E. "Jet damping dynamics for a spinning vehicle with transverse maneuvermotor thrust." In Astrodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-2022.
Full text"PCL / PEO composite Nanofiber Manufacturing Technology using Air Jet Spinning method." In International Conference Recent treads in Engineering & Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0214517.
Full textSahu, Jubaraj. "Unsteady CFD Modeling of Aerodynamic Flow Control over a Spinning Body with Synthetic Jet." In 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-747.
Full textLengaigne, Jacques, Jason Gunther, James T. Teasdale, Valérie Toupin-Guay, Martine Dubé, and Ilyass Tabiai. "Polypropylene Microfiber Extrusion By Hot Melt Rotary Jet Spinning For Non-Woven Membrane Manufacturing." In Canadian Society for Mechanical Engineering International Congress (2021 : Charlottetown, PE). Charlottetown, P.E.I.: University of Prince Edward Island. Robertson Library, 2021. http://dx.doi.org/10.32393/csme.2021.97.
Full text"A Study of Binding Properties of Tissue Engineering Scaffold Nylon6 Nanofiber using Air Jet Spinning Method." In International Conference Recent treads in Engineering & Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0214520.
Full textXu, Weiheng, Dharneedar Ravichandran, Sayli Jambhulkar, Yuxiang Zhu, and Kenan Song. "Fabrication of Multilayered Polymer Composite Fibers for Enhanced Functionalities." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64039.
Full textLallave, Jorge, and Muhammad M. Rahman. "Thermal Transport From a Rotating Disk During Partially Confined Liquid Jet Impingement." In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36188.
Full textJana, Anirban, and Arvind Raman. "Nonlinear Dynamics of a Flexible Spinning Disc Subjected to Combined External and Parametric Excitation." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21575.
Full textReports on the topic "Jet spinning"
Reneker, Darrell. Nanofiber Production by Gas Jet Spinning Method of Chemical Protective Clothing. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada435774.
Full textSahu, Jubaraj. Time-Accurate Simulations of Synthetic Jet-Based Flow Control for An Axisymmetric Spinning Body. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada426557.
Full text