To see the other types of publications on this topic, follow the link: Jets.

Journal articles on the topic 'Jets'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Jets.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Yan-Jie, Qing-Min Zhang, Jun Dai, Zhe Xu, and Hai-Sheng Ji. "Recurrent coronal jets observed by SDO/AIA." Research in Astronomy and Astrophysics 21, no. 10 (2021): 262. http://dx.doi.org/10.1088/1674-4527/21/10/262.

Full text
Abstract:
Abstract In this paper, we carried out multiwavelength observations of three recurring jets on 2014 November 7. The jets originated from the same region at the edge of AR 12205 and propagated along the same coronal loop. The eruptions were generated by magnetic reconnection, which is evidenced by continuous magnetic cancellation at the jet base. The projected initial velocity of jet2 is ∼402 km s−1. The accelerations in the ascending and descending phases of jet2 are not consistent, the former is considerably larger than the value of g ⊙ at the solar surface, while the latter is lower than g ⊙
APA, Harvard, Vancouver, ISO, and other styles
2

Moore, Ronald L., Jonathan W. Cirtain, Alphonse C. Sterling, and David A. Falconer. "DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS." Astrophysical Journal 720, no. 1 (2010): 757–70. http://dx.doi.org/10.1088/0004-637x/720/1/757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rhines, Peter B. "Jets." Chaos: An Interdisciplinary Journal of Nonlinear Science 4, no. 2 (1994): 313–39. http://dx.doi.org/10.1063/1.166011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Falle, S. A. E. G. "Jets." Astrophysics and Space Science 216, no. 1-2 (1994): 119–25. http://dx.doi.org/10.1007/bf00982478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Plaschke, Ferdinand, and Heli Hietala. "Plasma flow patterns in and around magnetosheath jets." Annales Geophysicae 36, no. 3 (2018): 695–703. http://dx.doi.org/10.5194/angeo-36-695-2018.

Full text
Abstract:
Abstract. The magnetosheath is commonly permeated by localized high-speed jets downstream of the quasi-parallel bow shock. These jets are much faster than the ambient magnetosheath plasma, thus raising the question of how that latter plasma reacts to incoming jets. We have performed a statistical analysis based on 662 cases of one THEMIS spacecraft observing a jet and another (second) THEMIS spacecraft providing context observations of nearby plasma to uncover the flow patterns in and around jets. The following results are found: along the jet's path, slower plasma is accelerated and pushed as
APA, Harvard, Vancouver, ISO, and other styles
6

Kimura, Motoaki, and Norimasa Miyagi. "STUDY ON DIFFUSION OF BUOYANT ROUND JETS(Jet and Plume)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 413–18. http://dx.doi.org/10.1299/jsmeicjwsf.2005.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spencer, Ralph, Chris De La Force, and Alastair Stirling. "Microquasar Jets: A Comparison with Extragalactic Jets." Symposium - International Astronomical Union 205 (2001): 264–65. http://dx.doi.org/10.1017/s0074180900221141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Denis, S., J. Delville, J.-H. Garem, and J.-P. Bonnet. "Control of jets expansion by impeding jets." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 80, S1 (2000): 81–84. http://dx.doi.org/10.1002/zamm.20000801321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kudoh, T., K. Shibata, and R. Matsumoto. "8.9. MHD simulations of jets from accretion disks: nonsteady jets vs. steady jets." Symposium - International Astronomical Union 184 (1998): 361–62. http://dx.doi.org/10.1017/s0074180900085223.

Full text
Abstract:
We present the results of 2.5-dimensional MHD simulations for jet formation from accretion disks in a situation such that not only ejection but also accretion of disk plasma are also included self-consistently. Although the jets in nonsteady MHD simulations (e.g., Uchida & Shibata 1985, Shibata & Uchida 1986, Matsumoto et al. 1996) have often been referred to as transient phenomena resulting from a special choice of initial conditions, we found that the characteristics of the nonsteady jets are very similar to those of steady jets: (1) The ejection point of the jet, which corresponds t
APA, Harvard, Vancouver, ISO, and other styles
10

Pasko, Victor P. "Electric jets." Nature 423, no. 6943 (2003): 927–28. http://dx.doi.org/10.1038/423927a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wilson, M. J., and S. A. E. G. Falle. "Steady jets." Monthly Notices of the Royal Astronomical Society 216, no. 4 (1985): 971–85. http://dx.doi.org/10.1093/mnras/216.4.971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bell, A. R. "Magnetohydrodynamic jets*." Physics of Plasmas 1, no. 5 (1994): 1643–52. http://dx.doi.org/10.1063/1.870666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Antkowiak, Arnaud, Nicolas Bremond, Jérôme Duplat, Stéphane Le Dizès, and Emmanuel Villermaux. "Cavity jets." Physics of Fluids 19, no. 9 (2007): 091112. http://dx.doi.org/10.1063/1.2775413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chicone, C., B. Mashhoon, and K. Rosquist. "Cosmic jets." Physics Letters A 375, no. 12 (2011): 1427–30. http://dx.doi.org/10.1016/j.physleta.2011.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bicknell, Geoffrey V., Dayton L. Jones, and Matthew Lister. "Relativistic jets." New Astronomy Reviews 48, no. 11-12 (2004): 1151–55. http://dx.doi.org/10.1016/j.newar.2004.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Leoncini, Xavier, and George M. Zaslavsky. "Chaotic jets." Communications in Nonlinear Science and Numerical Simulation 8, no. 3-4 (2003): 265–71. http://dx.doi.org/10.1016/s1007-5704(03)00038-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

HEWITT, RICHARD E., and PETER W. DUCK. "Pulsatile jets." Journal of Fluid Mechanics 670 (January 12, 2011): 240–59. http://dx.doi.org/10.1017/s0022112010005227.

Full text
Abstract:
We consider the evolution of high-Reynolds-number, planar, pulsatile jets in an incompressible viscous fluid. The source of the jet flow comprises a mean-flow component with a superposed temporally periodic pulsation, and we address the spatiotemporal evolution of the resulting system. The analysis is presented for both a free symmetric jet and a wall jet. In both cases, pulsation of the source flow leads to a downstream short-wave linear instability, which triggers a breakdown of the boundary-layer structure in the nonlinear regime. We extend the work of Riley, Sánchez-Sans & Watson (J. F
APA, Harvard, Vancouver, ISO, and other styles
18

Halzen, Francis, and Duncan A. Morris. "Coplanar jets." Physical Review D 42, no. 5 (1990): 1435–39. http://dx.doi.org/10.1103/physrevd.42.1435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Thoroddsen, S. T., and Amy Q. Shen. "Granular jets." Physics of Fluids 13, no. 1 (2001): 4–6. http://dx.doi.org/10.1063/1.1328359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

DE YOUNG, D. S. "Astrophysical Jets." Science 252, no. 5004 (1991): 389–96. http://dx.doi.org/10.1126/science.252.5004.389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wall, C. T. C. "Equivariant jets." Mathematische Annalen 272, no. 1 (1985): 41–65. http://dx.doi.org/10.1007/bf01455927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

MURAMATSU, Akinori, Kuu Kashino, and Seiichi Terahara. "Side jets in strongly-forced round air jets." Journal of the Visualization Society of Japan 28-1, no. 2 (2008): 1009. http://dx.doi.org/10.3154/jvs.28.1009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Saltó, Oriol. "+ Jets and + Heavy Flavor Jets at the Tevatron." Nuclear Physics B - Proceedings Supplements 186 (January 2009): 15–18. http://dx.doi.org/10.1016/j.nuclphysbps.2008.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Smith, B. L., and G. W. Swift. "A comparison between synthetic jets and continuous jets." Experiments in Fluids 34, no. 4 (2003): 467–72. http://dx.doi.org/10.1007/s00348-002-0577-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pumplin, Jon. "How to tell quark jets from gluon jets." Physical Review D 44, no. 7 (1991): 2025–32. http://dx.doi.org/10.1103/physrevd.44.2025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tomac, Mehmet N. "Novel impinging jets-based non-periodic sweeping jets." Journal of Visualization 23, no. 3 (2020): 369–72. http://dx.doi.org/10.1007/s12650-020-00633-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sapinski, Mariusz. "Expected performance of ATLAS for measurements of jets, b-jets, τ-jets, and ETmiss". EPJ direct 4, S1 (2002): 1–12. http://dx.doi.org/10.1007/s1010502cs108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Dekrét, Anton. "On quasi-jets." Časopis pro pěstování matematiky 111, no. 4 (1986): 345–52. http://dx.doi.org/10.21136/cpm.1986.118284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Toyoda, Kuniaki, Jun Akazawa, Hayato Mori, and Riho Hiramoto. "EFFECT OF STREAMWISE VORTICES ON THE CHARACTERISTICS OF JETS(Plane Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 171–76. http://dx.doi.org/10.1299/jsmeicjwsf.2005.171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shinohara, Eri, Fumitoshi Okamoto, Yuki Kitaoka, Kazuya Tatsumi, and Kazuyoshi Nakabe. "MIXING CHARACTERISTICS OF MULTI-JETS MODIFIED BY CYCLIC PERTURBATION(Multiple Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 255–60. http://dx.doi.org/10.1299/jsmeicjwsf.2005.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fendt, Christian, and Somayeh Sheikhnezami. "BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS." Astrophysical Journal 774, no. 1 (2013): 12. http://dx.doi.org/10.1088/0004-637x/774/1/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lim, A. J. "Variable stellar jets -- II. Precessing jets and stagnation knots." Monthly Notices of the Royal Astronomical Society 327, no. 2 (2001): 507–16. http://dx.doi.org/10.1046/j.1365-8711.2001.04772.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tyliszczak, Artur. "Multi-armed jets: A subset of the blooming jets." Physics of Fluids 27, no. 4 (2015): 041703. http://dx.doi.org/10.1063/1.4917179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sterling, Alphonse C., Ronald L. Moore, and Navdeep K. Panesar. "Solar Active Region Coronal Jets. III. Hidden-onset Jets." Astrophysical Journal 960, no. 2 (2024): 109. http://dx.doi.org/10.3847/1538-4357/acff6b.

Full text
Abstract:
Abstract Solar quiet- and coronal-hole region coronal jets frequently clearly originate from erupting minifilaments, but active-region jets often lack an obvious erupting-minifilament source. We observe a coronal-jet-productive active region (AR), AR 12824, over 2021 May 22 0–8 UT, primarily using Solar Dynamics Observatory (SDO) Atmospheric Imaging Array (AIA) EUV images and SDO/Helioseismic and Magnetic Imager magnetograms. Jets were concentrated in two locations in the AR: on the south side and on the northwest side of the AR’s lone large sunspot. The south-location jets are oriented so tha
APA, Harvard, Vancouver, ISO, and other styles
35

Jacquemin-Ide, J., J. Ferreira, and G. Lesur. "Magnetically driven jets and winds from weakly magnetized accretion discs." Monthly Notices of the Royal Astronomical Society 490, no. 3 (2019): 3112–33. http://dx.doi.org/10.1093/mnras/stz2749.

Full text
Abstract:
Abstract Semi-analytical models of disc outflows have successfully described magnetically driven, self-confined super-Alfvénic jets from near-Keplerian accretion discs. These jet-emitting discs (JEDs) are possible for high levels of disc magnetization μ defined as μ = 2/β, where beta is the usual plasma parameter. In near-equipartition JEDs, accretion is supersonic and jets carry away most of the disc angular momentum. However, these solutions prove difficult to compare with cutting-edge numerical simulations, for the reason that numerical simulations show wind-like outflows but in the domain
APA, Harvard, Vancouver, ISO, and other styles
36

Ferreira, Jonathan, and Pierre Olivier Petrucci. "Jet launching and field advection in quasi-Keplerian discs." Proceedings of the International Astronomical Union 6, S275 (2010): 260–64. http://dx.doi.org/10.1017/s1743921310016121.

Full text
Abstract:
AbstractThe fact that self-confined jets are observed around black holes, neutron stars and young forming stars points to a jet launching mechanism independent of the nature of the central object, namely the surrounding accretion disc. The properties of Jet Emitting Discs (JEDs) are briefly reviewed. It is argued that, within an alpha prescription for the turbulence (anomalous viscosity and diffusivity), the steady-state problem has been solved. Conditions for launching jets are very stringent and require a large scale magnetic field Bz close to equipartition with the total (gas and radiation)
APA, Harvard, Vancouver, ISO, and other styles
37

Okita, Yuji, Katsutaka Nakamura, Yuuta Shiizaki, and Daisuke Nobuta. "LASER OBSERVATION ON THE INNER FLOW STRUCTURE OF WATER JETS(Water Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 337–42. http://dx.doi.org/10.1299/jsmeicjwsf.2005.337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Takaichi, Naoaki, Naoya Shigemori, and Katsuhiro Yamamoto. "BEHAVIOR OF HIGH-SPEED PULSE WATER JETS IN THE ATMOSPHERE(Water Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 343–48. http://dx.doi.org/10.1299/jsmeicjwsf.2005.343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tsujimoto, Koichi, Toshihiko Shakouchi, Shuji Sasazaki, and Toshitake Ando. "Direct Numerical Simulation of Jet Mixing Control Using Combined Jets(Numerical Simulation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 725–30. http://dx.doi.org/10.1299/jsmeicjwsf.2005.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Binglong, He Liu, Yangyang Li, Hui Liu, and Jinzhong Dong. "Experimental Study of Coaxial Jets Mixing Enhancement Using Synthetic Jets." Applied Sciences 11, no. 2 (2021): 803. http://dx.doi.org/10.3390/app11020803.

Full text
Abstract:
Synthetic jets perpendicular to the mainstream have been used to experimentally study the coaxial jets mixing enhancement in this paper. The parameters of coaxial jets such as vorticity, streamwise velocity, radial velocity, Reynolds shear stress, and turbulence intensity are measured using the particle image velocimetry (PIV) and hot wire anemometers. The distribution characteristics of these parameters with and without synthetic jets were obtained. The mechanism of coaxial jets mixing enhancement using synthetic jets was summarized by analyzing these experimental results, and it was also fou
APA, Harvard, Vancouver, ISO, and other styles
41

Waliszewski, Włodzimierz. "Jets in differential spaces." Časopis pro pěstování matematiky 110, no. 3 (1985): 241–49. http://dx.doi.org/10.21136/cpm.1985.118231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pfister, Michael. "Deflector-generated jets." Journal of Hydraulic Research 47, no. 4 (2009): 000. http://dx.doi.org/10.3826/jhr.2009.3525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hautmann, F. "QCD and Jets." Acta Physica Polonica B 44, no. 4 (2013): 761. http://dx.doi.org/10.5506/aphyspolb.44.761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Falle, S. A. E. G., D. E. Innes, and M. J. Wilson. "Steady stellar jets." Monthly Notices of the Royal Astronomical Society 225, no. 4 (1987): 741–59. http://dx.doi.org/10.1093/mnras/225.4.741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Falle, S. A. E. G. "Self-similar jets." Monthly Notices of the Royal Astronomical Society 250, no. 3 (1991): 581–96. http://dx.doi.org/10.1093/mnras/250.3.581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Langenberg, Heike. "Jets of mystery." Nature Geoscience 1, no. 12 (2008): 816. http://dx.doi.org/10.1038/ngeo373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Stuetz, Engelbert. "Colliding water jets." Physics Teacher 57, no. 3 (2019): 208. http://dx.doi.org/10.1119/1.5092500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Smith, Michael D. "Slender elliptical jets." Astrophysical Journal 421 (February 1994): 400. http://dx.doi.org/10.1086/173659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Mironov, C., P. Constantin, and G. J. Kunde. "Dilepton tagged jets." European Physical Journal C 49, no. 1 (2006): 19–22. http://dx.doi.org/10.1140/epjc/s10052-006-0114-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Renk, Thorsten. "Jets in Medium." Progress of Theoretical Physics Supplement 193 (2012): 101–4. http://dx.doi.org/10.1143/ptps.193.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!