Academic literature on the topic 'JFET SiC normally-on'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'JFET SiC normally-on.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "JFET SiC normally-on"

1

Casady, Jeff B., David C. Sheridan, Robin L. Kelley, Volodymyr Bondarenko, and Andrew Ritenour. "A Comparison of 1200 V Normally-OFF & Normally-on Vertical Trench SiC Power JFET Devices." Materials Science Forum 679-680 (March 2011): 641–44. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.641.

Full text
Abstract:
Equivalent sized (4.5 mm2 die area), 1200 V, 4H-SiC, vertical trench Junction Field Effect Transistors (JFETs) were characterized in terms of DC and switching performance. The 100 mΩ Enhancement-Mode (EM) JFET was found to have natural advantages in safe operation being normally-off, whereas the Depletion-Mode (DM) JFET was found to have advantages with ~ twice as high saturation current, less on-resistance (85 mΩ) and no gate current required in the on-state. The JFETs were found to both have radically less (five to ten times) switching energies than corresponding 1200 V Si transistors, with the DM JFET and EM JFET having EON and EOFF of only 115 µJ and 173 µJ, respectively when tested at half-rated voltage (600 V) and 12 A.
APA, Harvard, Vancouver, ISO, and other styles
2

Rueschenschmidt, Kathrin, Michael Treu, Roland Rupp, Peter Friedrichs, Rudolf Elpelt, Dethard Peters, and Peter Blaschitz. "SiC JFET: Currently the Best Solution for an Unipolar SiC High Power Switch." Materials Science Forum 600-603 (September 2008): 901–6. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.901.

Full text
Abstract:
Today a main focus in high efficiency power electronics based on silicon carbide (SiC) lies on the development of an unipolar SiC switch. This paper comments on the advantages of SiC switching devices in comparison to silicon (Si) switches, the decision for the SiC JFET against the SiC MOSFET, and will show new experimental results on SiC JFETs with focus on the production related topics like process window and parameter homogeneity which can be achieved with the presented device concept. Due to material properties unipolar SiC switches have, other than their Si high voltage counterparts, very low gate charge, good body diode performance, and reduced switching losses because of the potential of lower in- and output capacitances. The most common unipolar switch is the MOSFET. However, the big challenge in the case of a SiC MOSFET is the gate oxide. A gate oxide on SiC that provides adequate performance and reliability is missing until now. An alternative unipolar switching device is a normally-on JFET. The normally-on behavior is a benefit for current driven applications. If a normally-off behavior is necessary the JFET can be used together with a low voltage Si MOSFET in a cascode arrangement. Recently manufactured SiC JFETs show results in very good accordance to device simulation and demonstrate the possibility to fabricate a SiC JFET within a mass production. A growing market opportunity for such a SiC switch becomes visible.
APA, Harvard, Vancouver, ISO, and other styles
3

McNutt, Ty, John Reichl, Harold Hearne, Victor Veliadis, Megan McCoy, Eric J. Stewart, Stephen Van Campen, et al. "Demonstration of High-Voltage SiC VJFET Cascode in a Half-Bridge Inverter." Materials Science Forum 556-557 (September 2007): 979–82. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.979.

Full text
Abstract:
This work utilizes silicon carbide (SiC) vertical JFETs in a cascode configuration to exploit the inherent advantages of SiC and demonstrate the device under application conditions. The all-SiC cascode circuit is made up of a low-voltage normally-off vertical JFET, and high-voltage normally on vertical JFET to form a normally-off cascode switch. In this work, a half-bridge inverter was developed with SiC cascode switches for DC to AC power conversion. The inverter uses high-side and a low-side cascode switches that are Pulse Width Modulated (PWM) from a 500 V bus to produce a 60 Hz sinusoid at the output. An inductor and a capacitor were used to filter the output, while a load resistor was used to model the steady-state current of a motor.
APA, Harvard, Vancouver, ISO, and other styles
4

Malhan, Rajesh Kumar, S. J. Rashid, Mitsuhiro Kataoka, Yuuichi Takeuchi, Naohiro Sugiyama, F. Udrea, G. A. J. Amaratunga, and T. Reimann. "Switching Performance of Epitaxially Grown Normally-Off 4H-SiC JFET." Materials Science Forum 600-603 (September 2008): 1067–70. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.1067.

Full text
Abstract:
Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6 – 10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5 – 1.8kV was realized at VGS = −5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design.
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Lin, Michael S. Mazzola, and David C. Sheridan. "High-Temperature Reliability Assessment of 4H-SiC Vertical-Channel JFET Including Forward Bias Stress." Materials Science Forum 615-617 (March 2009): 723–26. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.723.

Full text
Abstract:
In this work, we report the most recent reliability results of the 1200-V SiC vertical-channel JFETs (VJFETs) under reverse and forward bias of the gate-source diode at temperatures up to 200 °C. The preliminary results indicate that continuous forward bias stress of the gate-source diode at 200 °C for 112 hours produced no observable change in the forward conduction or transient or reverse blocking characteristics of the vertical-channel JFET. This preliminary result suggests that devices based on this structure, such as the enhancement-mode (normally off) SiC VJFET, may not be effected by the recombination enhanced defect creation process and the associated increase in on-resistance, related to body-diode conduction in the SiC DMOSFET and the SiC lateral-channel depletion-mode JFET. Since the vertical-channel JFET has no body diode, no degradation is possible from the reverse conduction mode of operation.
APA, Harvard, Vancouver, ISO, and other styles
6

Kang, In Ho, Sung Jae Joo, Wook Bahng, Sang Cheol Kim, and Nam Kyun Kim. "Design and Characterization of 50W Switch Mode Power Supply Using Normally-On SiC JFET." Materials Science Forum 645-648 (April 2010): 1151–54. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.1151.

Full text
Abstract:
The 50W Quasi-resonant mode SMPS which adopted a normally-on-type SiC JFET as a switch has been designed and characterized. A simple decision circuit and an auxiliary power supply was utilized to safely protect the JFET from an in-rush current at initial operation stage and to provide sufficient negative voltage for a complete JFET drive. Even without a refine engineering, the SMPS showed 96% efficiency at a full load state.
APA, Harvard, Vancouver, ISO, and other styles
7

Dubois, Fabien, Hervé Morel, Dominique Bergogne, and Régis Meuret. "Modeling of the Punch-Through Effect in Normally-On SiC JFET used in High Temperature Inverter for Aerospace Application." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, HITEC (January 1, 2012): 000154–61. http://dx.doi.org/10.4071/hitec-2012-wa14.

Full text
Abstract:
This paper presents a qualitative description of the punch-through mechanism in Silicon Carbide (SiC) JFET from Infineon/SiCED. A detailed one-dimensional analytical expression is derived for the current-voltage characteristic of the punch-through effect in the SiC JFET. The proposed model based on physical parameters is validated with experimental results for low current level.
APA, Harvard, Vancouver, ISO, and other styles
8

Henfling, Joseph A., Stan Atcitty, and Frank Maldonado. "Enhanced High Temperature Power Controller." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, HITEN (January 1, 2011): 000134–38. http://dx.doi.org/10.4071/hiten-paper1-jhenfling.

Full text
Abstract:
This paper describes an implementation strategy used to develop a high temperature power controller. The system is based on using high-temperature (HT) silicon-on-insulator (SOI) technology with silicon carbide (SiC) based integrated circuits (ICs) to create an efficient, high-temperature power controller. Two drives were tested with this system, one using normally off JFET switching and the other using MOSFET switching. Normally off JFETs made from SiC were used to drive the output loads. Such circuit designs will improve the efficiency of future smart grid power controllers.
APA, Harvard, Vancouver, ISO, and other styles
9

Godignon, Phillippe, Silvia Massetti, X. Jordà, V. Soler, J. Moreno, D. Lopez, and E. Maset. "SiC Power Switches Evaluation for Space Applications Requirements." Materials Science Forum 858 (May 2016): 852–55. http://dx.doi.org/10.4028/www.scientific.net/msf.858.852.

Full text
Abstract:
We have evaluated several SiC power switches available on the market, by defining and performing a global test campaign oriented to Space applications requirements, in order to define their main benefits but also the limits of current SiC technology. This allowed to identify a number of target applications where SiC could be used as a technology push for a new generation of space electronics units. Silicon devices qualified for space systems above 600V for the switches and 1200V for the rectifiers are not available due to performances limitations of Si. Among the typical static and dynamic characterization, we have performed temperature and power stress and HTRB tests. More remarkably, we have carried out a first batch of total dose and heavy ions radiation experiments on 3 types of power switches: normally-on JFET, normally-off JFET and power MOSFET. Due to its higher stability and radiation hardness, the normally-on JFET is today the more adequate and reliable switch for the space applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Sankin, Igor, V. Bondarenko, Robin L. Kelley, and Jeff B. Casady. "SiC Smart Power JFET Technology for High-Temperature Applications." Materials Science Forum 527-529 (October 2006): 1207–10. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1207.

Full text
Abstract:
Wide bandgap semiconductor materials such as SiC or GaN are very attractive for use in high-power, high-temperature, and/or radiation resistant electronics. Monolithic or hybrid integration of a power transistor and control circuitry in a single or multi-chip wide bandgap power semiconductor module is highly desirable for such applications in order to improve the efficiency and reliability. This paper describes a new monolithic SiC JFET IC technology for high-temperature smart power applications that allows for on-chip integration of control circuitry and normally-off power switch. In order to demonstrate the feasibility of this technology, hybrid logic gates with maximum switching frequency > 20 MHz and normally-off 900 V power switch have been fabricated on alumina substrates using discrete enhanced and depletion mode vertical trench JFETs.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "JFET SiC normally-on"

1

Ma, Thi Thuong Huyen. "Evaluation of DC supply protection for efficient energy delivery in low voltage applications." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1055/document.

Full text
Abstract:
Actuellement, il y a une baisse du prix des ressources énergétiques distribuées, en particulier l'énergie solaire photovoltaïque, conduisant à la croissance significative de leur capacité d'installation dans de nombreux pays. D'autre part, les politiques encourageant l'efficacité énergétique ont favorisé le développement de charges DC dans les zones domestiques, telles que l'éclairage LED, les ordinateurs,, les téléphones, les téléviseurs, les moteurs DC efficaces et les véhicules électriques. Grace à ce changement, le système de distribution de microgrid DC devient plus attractive que le système de distribution à courant alternatif traditionnel. Les avantages principaux du microgrid DC sont l'efficacité énergétique plus élevée, plus facile à intégrer avec les sources d'énergie distribuées et le système de stockage. Alors que de nombreuses recherches se concentrent sur les stratégies de contrôle et la gestion de l'énergie dans le microgrid DC, sa protection reçoit une attention insuffisante et un manque de réglementation et d'expériences. La protection dans les réseaux DC est plus difficile que dans le réseau AC en raison de l'arc continu, de la valeur plus élevée du courant de courtcircuit et du taux de défaut de montée. En outre, dans les réseaux distribués à courant continu sont composés de nombreux dispositifs de commutation électroniques et semi-conducteurs, qui ne supportent le courant de défaut que quelques dizaines de microsecondes. Les disjoncteurs mécaniques, qui ont un temps de réponse de quelques dizaines de millisecondes, ne semblent pas satisfaire aux exigences de sécurité du microréseau à courant continu. L'absence d'un dispositif de protection efficace constitue un obstacle au développement du microgrid DC dans le système distribué. Cette thèse propose un disjoncteur DC auto-alimenté à courant continu utilisant normalement JFET SiC, qui offre un excellent dispositif de protection pour les microgrids DC grâce à son temps de réponse rapide et ses faibles pertes à l'état passant. La conception du disjoncteur DC à semi-conducteurs vise à répondre à deux objectifs: temps de réponse rapide et fiabilité. Les spécifications conçues et les énergies critiques qui entraînent la destruction du disjoncteur sont identifiées sur la base des résultats mesurés d'un JFET populaire dans le commerce. Un pilote de protection très rapide et fiable basé sur une topologie à convertisseur flyback avant est utilisé pour générer une tension négative suffisante pour tourner et maintenir le JFET SiC. Le convertisseur sera activé chaque fois que le disjoncteur détecte des défauts de court-circuit en détectant la tension de drain-source de JFET et crée une tension négative s'applique à la porte de JFET. Pour éviter une défaillance de la porte par surtension au niveau de la grille du JFET, la tension de sortie du convertisseur de retour vers l'avant est régulée à l'aide de la mesure coté primaire. Les résultats expérimentaux sur le prototype du disjoncteur DC ont validé les principes de fonctionnement proposés et ont confirmé que le disjoncteur DC à semi-conducteurs proposé peut interrompre le défaut en 3 μs. D'un autre côté, un modèle du JFET normalement activé dans l'environnement Matlab/Simulink est construit pour étudier les comportements du SSCB pendant une durée de court-circuit. L'accord entre la simulation et les résultats expérimentaux confirment que ce modèle JFET peut être utilisé pour simuler le fonctionnement d'un disjoncteur DC et dans l'étude du fonctionnement du microgrid DC pendant le processus de défaut et de compensation
Currently, there is a drop in the price of distributed energy resources, especially solar PVs, which leads to a significant growth of the installed capacities in many countries. On the other hand, policies encouraging energy efficiency have promoted the development of DC loads in domestic areas, such as LEDs lighting, computers, telephones, televisions, efficient DC motors and electric vehicles. Corresponding to these changes in sources and loads, DC microgrid distribution system becomes more attractive than the traditional AC distribution system. The main advantages of the DC microgrid are higher energy efficiency, easier in integrating with distributed energy sources and storage systems. While many studies concentrate on the control strategies and energy management in the DC microgrid, the protection still receives inadequate attention and lack of regulations and experiences. Protection in DC grids is more complex than AC grids due to the continuous arc, higher short circuit current value and fault rate of rising. Furthermore, the DC distributed grids are composed of many electronic and semiconductor switching devices, which only sustain the fault currents of some tens of microseconds. Mechanical circuit breakers, which have a response time in tens of milliseconds, seem not to meet the safety requirement of DC microgrids. The lack of effective protection devices is a barrier to the development of DC microgrids in the distributed systems. This thesis proposes a self-power solid state DC circuit breaker using normally-on SiC JFET, which offers a great protection device for DC microgrids due to its fast response time and low on-state losses. The design of the solid state DC circuit breaker aims to meet two objectives: fast response time and high reliability. The designed specifications and critical energies that result in the destruction of the circuit breaker are identified on the basis of the experiments of a commercial normally-on JFET. In addition, a very fast and reliable protection driver based on a forward-flyback converter topology is employed to generate a sufficient negative voltage to turn and hold off the SiC JFET. The converter will be activated whenever short-circuit faults are detected by sensing the drain-source voltage, then creating a negative voltage applied to the gate of JFET. To avoid gate failure by overvoltage at the gate of JFET, the output voltage of the forward-flyback converter is regulated using Primary Side Sensing technique. Experimental results validated the working principle of the proposed solid state DC circuit breaker with fault clearing time less than 3 μs. Additionally, a model of the normally-on JFET in Matlab/Simulink environment is built for exploring the behaviors of the solid-state DC circuit breaker during short-circuit faults. The agreement between the simulation and experimental results confirms that this JFET model can be appropriately used for the investigation of solid state DC circuit breaker operations and DC microgrids in general during fault evens and clearing fault processes
APA, Harvard, Vancouver, ISO, and other styles
2

Guédon, Florent Dominique. "Power converters with normally-on SiC JFETs." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peftitsis, Dimosthenis. "On Gate Drivers and Applications of Normally-ON SiC JFETs." Doctoral thesis, KTH, Elektrisk energiomvandling, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122679.

Full text
Abstract:
In this thesis, various issues regarding normally-ON silicon carbide (SiC)Junction Field-Effect Transistors (JFETs) are treated. Silicon carbide powersemiconductor devices are able to operate at higher switching frequencies,higher efficiencies, and higher temperatures compared to silicon counterparts.From a system perspective, these three advantages of silicon carbide can determinethe three possible design directions: high efficiency, high switchingfrequency, and high temperature.The structure designs of the commercially-available SiC power transistorsalong with a variety of macroscopic characteristics are presented. Apart fromthe common design and performance problems, each of these devices suffersfrom different issues and challenges which must be dealt with in order to pavethe way for mass production. Moreover, the expected characteristics of thefuture silicon carbide devices are briefly discussed. The presented investigationreveals that, from the system point-of-view, the normally-ON JFET isone of the most challenging silicon carbide devices. There are basically twoJFET designs which were proposed during the last years and they are bothconsidered.The state-of-the-art gate driver for normally-ON SiC JFETs, which wasproposed a few years ago is briefly described. Using this gate driver, theswitching performance of both Junction Field-Effect Transistor designs wasexperimentally investigated.Considering the current development state of the available normally-ONSiC JFETs, the only way to reach higher current rating is to parallel-connecteither single-chip discrete devices or to build multichip modules. Four deviceparameters as well as the stray inductances of the circuit layout might affectthe feasibility of parallel connection. The static and dynamic performance ofvarious combinations of parallel-connected normally-ON JFETs were experimentallyinvestigated using two different gate-driver configurations.A self-powered gate driver for normally-ON SiC JFETs, which is basicallya circuit solution to the “normally-ON problem” is also shown. This gatedriver is both able to turn OFF the shoot-through current during the startupprocess, while it also supplies the steady-state power to the gate-drivecircuit. From experiments, it has been shown that in a half-bridge converterconsisting of normally-ON SiC JFETs, the shoot-through current is turnedOFF within approximately 20 μs.Last but not least, the potential benefits of employing normally-ON SiCJFETs in future power electronics applications is also presented. In particular,it has been shown that using normally-ON JFETs efficiencies equal 99.8% and99.6% might be achieved for a 350 MW modular multilevel converter and a40 kVA three-phase two-level voltage source converter, respectively.Conclusions and suggestions for future work are given in the last chapterof this thesis.
I denna avhandling behandlas olika aspekter av normally–ON junction–field–effect–transistorer (JFETar) baserade på kiselkarbid (SiC). Effekthalvledarkomponenteri SiC kan arbeta vid högre switchfrekvens, högre verkningsgradoch högre temperatur än motsvarigheterna i kisel. Ur ett systemperspektivkan de tre nämnda fördelarna användas i omvandlarkonstruktionen för attuppnå antingen hög verkningsgrad, hög switchfrekvens eller hög temperaturtålighet.Såväl halvledarstrukturen som de makroskopiska egenskaperna för kommersiellttillgängliga SiC–transistorer presenteras. Bortsett från de vanligakonstruktions–och prestandaproblemen lider de olika komponenterna av ettantal tillkortakommanden som måste övervinnas för att bana väg för massproduktion.Även framtida SiC–komponenter diskuteras.Ur ett systemperspektiv är normally-ON JFETen en av de mest utmanandeSiC-komponenterna. De två varianter av denna komponent som varittillgängliga de senaste åren har båda avhandlats.State–of–the–art–drivdonet för normally-ON JFETar som presenteradesför några år sedan beskrivs i korthet. Med detta drivdon undersöks switchegenskapernaför båda JFET-typerna experimentellt.Vid beaktande av det aktuella utvecklingsstadiet av de tillgängliga normally–ON JFETarna i SiC, är det möjligt att uppnå höga märkströmmar endastom ett antal single–chip–komponenter parallellkopplas eller om multichipmodulerbyggs. Fyra komponentparametrar samt strö-induktanser för kretsenkan förutses påverka parallellkopplingen. De statiska och dynamiska egenskapernaför olika kombinationer av parallellkopplade normally-ON JFETarundersöks experimentellt med två olika gate–drivdonskonfigurationer.Ett självdrivande gate-drivdon för normally-ON JFETar presenteras också.Drivdonet är en kretslösning till “normally–ON–problemet”. Detta gatedrivdonkan både stänga av kortslutningsströmmen vid uppstart och tillhandahållaströmförsörjning vid normal drift. Med hjälp av en halvbrygga medkiselkarbidbaserade normally–ON JFETar har det visats att kortslutningsströmmenkan stängas av inom cirka 20 μs.Sist, men inte minst, presenteras de potentiella fördelarna med användningenav SiC-baserade normally-ON JFETar i framtida effektelektroniskatillämpningar. Speciellt visas att verkningsgrader av 99.8% respektive 99.5%kan uppnås i fallet av en 350 MW modular multilevel converter och i en40 kVA tvånivåväxelriktare. Sista kaplitet beskriver slutsatser och föreslagetframtida arbete.

QC 20130527

APA, Harvard, Vancouver, ISO, and other styles
4

Peftitsis, Dimosthenis, Jang-Kwon Lim, Jacek Rabkowski, Georg Tolstoy, and Hans-Peter Nee. "Experimental Comparison of Different Gate-Driver Configurations for Parallel-Connection of Normally-ON SiC JFETs." KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104800.

Full text
Abstract:
Due to the low current ratings of the currently available silicon carbide (SiC) switches they cannot be employed in high-power converters. Thus, it is necessary to parallel-connect several switches in order to reach higher current ratings. This paper presents an investigation of parallel-connected normally-on SiC junction field effect transistors. There are four crucial parameters affecting the effectiveness of the parallel-connected switches. However, the pinch-off voltage and the reverse breakdown voltage of the gates seem to be the most important parameters which affect the switching performance of the devices. In particular, the spread in these two parameters might affect the stable off-state operation of the switches. The switching performance and the switching losses of a pair of parallel-connected devices having different reverse breakdown voltages of the gates is investigated by employing three different gate-driver configurations. It is experimentally shown that using a single gate-driver circuit the switching performance of the parallel-connected devices is almost identical, while the total switching losses are lower compared to the other two configurations.

QC 20121116

APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "JFET SiC normally-on"

1

Kim, Jong-Hyun, Byung Min, Ju-Won Baek, and Dong-Wook Yoo. "Protection circuit of normally-on SiC JFET using an inrush current." In INTELEC 2009 - 2009 International Telecommunications Energy Conference. IEEE, 2009. http://dx.doi.org/10.1109/intlec.2009.5351894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mazzola, M., J. Gafford, C. Parker, G. Tian, and M. Molen. "Inductive Switching with a 1-kA (Saturation) Normally on SiC JFET Switch Module." In 2008 IEEE International Power Modulators and High Voltage Conference. IEEE, 2008. http://dx.doi.org/10.1109/ipmc.2008.4743566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Udrea, Mihaila, Rashid, Amaratunga, Takeuchi, Kataoka, and Malhan. "A double channel normally-off SiC JFET device with ultra-low on-state resistance." In IC's. IEEE, 2004. http://dx.doi.org/10.1109/wct.2004.240034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vazquez, A., A. Rodriguez, J. Sebastian, E. Maset, A. Ferreres, and E. Sanchis. "Dynamic behavior analysis and characterization of a cascode rectifier based on a normally-on SiC JFET." In 2014 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2014. http://dx.doi.org/10.1109/ecce.2014.6953608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vazquez, A., A. Rodriguez, M. Fernandez, M. M. Hernando, and J. Sebastian. "On the use of front-end cascode rectifiers based on normally-on SiC JFET and Si MOSFET." In 2013 IEEE Applied Power Electronics Conference and Exposition - APEC 2013. IEEE, 2013. http://dx.doi.org/10.1109/apec.2013.6520546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Miao, Zhenyu, Gourab Sabui, Aozhu Chen, Yan Li, Z. John Shen, Jun Wang, Zhikang Shuai, An Luo, Xin Yin, and Mengxuan Jiang. "A self-powered ultra-fast DC solid state circuit breaker using a normally-on SiC JFET." In 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2015. http://dx.doi.org/10.1109/apec.2015.7104436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Katoh, Kaoru, Katsumi Ishikawa, Ayumu Hatanaka, Kazutoshi Ogawa, Satoru Akiyama, Takashi Ogawa, Natsuki Yokoyama, Naoki Maru, Osamu Takahashi, and Koji Nishisu. "Study on low-loss gate drive circuit for high efficiency server power supply using normally-off SiC-JFET." In 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE-ASIA). IEEE, 2014. http://dx.doi.org/10.1109/ipec.2014.6869908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huyen Ma, Thi Thuong, Thanh Kha Tran, Hamed Yahoui, Nicolas Siauve, and Hoang Giang Vu. "Design of a forward-flyback converter based drive with gate voltage limitation for a DC circuit breaker using normally-on SiC JFET." In 2017 IEEE Second International Conference on DC Microgrids (ICDCM). IEEE, 2017. http://dx.doi.org/10.1109/icdcm.2017.8001017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rodriguez, Alberto, Aitor Vazquez, Diego G. Lamar, and Marta M. Hernando. "Increasing the voltage and the switching frequency in a dual active bridge using a normally-on SiC JFET in a cascode configuration." In 2013 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2013. http://dx.doi.org/10.1109/ecce.2013.6647362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xueqing, Anup Bhalla, Petre Alexandrov, John Hostetler, and Leonid Fursin. "Series-connection of SiC normally-on JFETs." In 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). IEEE, 2015. http://dx.doi.org/10.1109/ispsd.2015.7123429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography