Contents
Academic literature on the topic 'Jordfelsskydd'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jordfelsskydd.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Jordfelsskydd"
Hollander, Johan. "RCC-Jordfelsskydd, mätmodul för övertonsanalys." Thesis, Jönköping University, JTH, Computer and Electrical Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-11615.
Full textThe majority of all power cuts that affects individuals and communities are caused by earth faults on the power transmission lines at 10kV and 20kV level [1]. If these power cuts could be eliminated, less disturbances and interrupts would lead to large amounts of money savings.
Swedish Neutral has developed such a protection system. When an earth fault occurs power is injected into the neutral point of the transformer. The RCC (Residual Current Compensation) protection calculates a compensation current exactly 180 degrees out of phase to the fault current. Doing this, the voltage at the fault location becomes very close to zero, without affecting the power transmission.
The protection system can only compensate automatically for the fundamental frequency (50Hz), and manually for the 3rd, 5th, 7th and 9th harmonics. In most cases, when the harmonics are very small it is not necessary to compensate for them. There are though cases when compensation for the harmonics is necessary.
This thesis focuses on finding the best method to extract the content of a sampled signal regarding both simplicity and speed. Both amplitude and phase of each harmonic must be calculated. Is the proposed method suitable for the current computer system and how can it easily be implemented.
Because the fundamental frequency is known and the harmonics are all multiples of the fundamental frequency it makes the task less complex. It is not necessary to use the FFT algorithm. The DFT can be calculated using correlation. Both phase and amplitude can be calculated very precisely with few samples and not so many computer operations.
Edblom, Hampus. "Analys av reläskyddsinställningar för jordfelsskydd." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36439.
Full textWell-adjusted relay protection for electrical substations is a necessity for personal safety and reliable operation. The aim of the report is to investigate whether non-directional protection with signaling alone is sufficient to protect the facility being investigated, and if directional protection has the advantage of improving fault detection, reducing the risk of unnecessary operation or reducing the function time. The facility under investigation is a 6.3 kV industrial network with resistance grounding. The report checks the insulation values and current tolerances for the equipment, which are then compared with calculated voltages and currents at single-phase earth faults. The report also briefly describes directional protection and its functions in relation to the issue of the potential benefit of directional protection. The result was that overvoltages due to earth faults are not a problem, but the fault current through the neutral point resistance is too large for signaling alone. In the case of earth faults with very low fault impedance, the neutral point resistance can handle the fault current for 30 seconds. After which the heat development results in the neutral point resistance being disconnected and the facility being isolated from the neutral point. According to the study, targeted protection is not needed in a facility like this. This is based on the fact that the cable paths are too short to cause capacitive currents large enough to cause unnecessary operation in non-directional protection, and that the network structure does not generate currents in unexpected directions. The result of the report shows that non-directional protection is sufficient, but that the operation function should be changed to tripping of faulty circuits
Bring, Hampus, and Olle Emanuelsson. "Vinkelfelet i mätkretsens påverkan på riktade jordfelsskydd." Thesis, Högskolan Väst, Avd för automationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-7511.
Full textThis bachelor's thesis examines the angular error in the measurement circuit for directional earth-fault protection and how this error affects the fault disconnection. Angular errors in the measurement circuit can affect the directional earth-fault protection in such a way that the real fault current and the measured fault current do not match. This can lead to missed or unwarranted fault disconnections. Vattenfall has a requirement which states that the angular error must not exceed ±2 degrees for the measurement circuit. Since the angular error in many cases has a high impact on the earth-fault accuracy, an investigation concerning what Vattenfalls angle requirement really means. The main cause of the angular error usually occurs in the current transformers and therefore two commonly used current transformers in the grid with different classifications and their impact on the angular error in the measurement circuit are examined. Ground fault is the most common fault which occurs in a distribution network, its size depends largely on the amount of capacitive current which the grid contributes with as well as the size of the neutral grounding resistor. The capacitive contribution of the grid compensates centrally in the distribution station and sometimes locally on the line. The maximum permitted centrally compensated part of a line is limited to 30 A, this central part can go up to 60 A in case the line needs to be fed from a second distribution station. The angular error has a higher impact if the capacitive contribution is high and for low values of the neutral grounding resistor. In many cases more than one earth-fault protection are found on the same line, in these cases selectivity is always pursued. The angular error may have a negative effect on the selectivity. By calculations, simulations and tests a number of conclusions can be drawn. Vattenfalls angle requirement gives an unclear picture concerning the permitted impact on the earthfault protection. Moreover selecting the correct current transformer demonstrates that the angular requirement can probably be sharpened. To reduce the influence of the angular error the maximum permitted centrally compensated part be reduced and/or the value of the neutral grounding resistor can be increased. A selectivity of 1000 Ω can not always be applied since certain cases require a selectivity of 2000 Ω. By setting the zero sequence voltage as the trigger condition and the zero sequence current as the realese condition, according to this study it may be possible to achieve a more accurate earth-fault protection.
Carlander, Isabel, and Malin Holmberg. "Undersökning och exemplifiering av ett oriktat jordfelsskydd för detektering av dubbla jordfel i impedansjordade nät." Thesis, Högskolan Väst, Avdelningen för data-, elektro- och lantmäteriteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-9204.
Full textThis thesis describes problems that might occur with detecting and disconnection of cables and lines that have suffered from cross-country fault in impedance grounded networks, furthermore how and if an undirected earth-fault relay could affect the way these faults are dealt with. When single-phase earth-faults occur, the network suffers from a dissymmetry. This dissymmetry leads to enhanced stress on the parts of the network which are healthy. This stress could cause other earth-faults to occur, for example on locations in the network where, for some reason the insolation has been compromised. These problems could lead to that the time it takes for the relays to disengage the faulty cables becomes too long or that unnecessary large areas of the network are disconnected. The purpose of this study is to illustrate these problems and to analyze in what way an undirected earth-fault relay could affect the outcome of these problems. By examining theoretical cases where earth-faults had occur, files from actual disturbances and by verifications tests with relays in the laboratory and Comtrade-files developed from PSCAD, these problems could be analyzed and were easy to survey. As a result of the study it was found that the undirected earth-fault relay both can contribute to better selectivity in the network and to faster disconnection in the event of cross-country faults. The undirected earth-fault relay should also be able to handle additional cases when earth-faults occurs, for example, where a simultaneous uncompensated power distribution network leads to that the directed earth-fault relay functions does not work. The earth-fault function is recommended to be used with DFT-measuring, as this prevents the relay from tripping for harmonics, transients and direct-current components. A good knowledge regarding the capacitive currents occurring in the network is crucial to set the relay correct and prevent from unselective tripping, but if set correctly, no conflict with other protective relay functions has been noticed. The problem with disconnecting cross-country faults mainly occurs where two-phase-measuring overcurrent protective relays are used, therefore, the transition to three-phase-measuring overcurrent-relays are recommended in places where the undirected earth-fault relay proves to be difficult to set up correctly.
Andersson, Robin, and Jonas Larsson. "Jämförelse av riktade reläskyddsfunktioner i impedansjordade nät." Thesis, Högskolan Väst, Avd för data- och elektroteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-6039.
Full textThis thesis describes how different values on a neutral grounding resistor and an uncompensated power distribution network affect the zero sequence current and the zero sequence voltage. If the neutral grounding reactor in the power distribution network is too overcompensated or undercompensated, the directional earth-fault relay may not work. The purpose of this study is to present the advantages and disadvantages of two different earth-fault functions. The two earth-fault functions that will be compared are an admittance-based earth-fault protection and a directional earth-fault protection with angle calculation between the zero sequence current and the zero sequence voltage. The capacitive earth-fault currents have increased in the distribution stations because the overhead lines are replaced with underground cables. The capacitive current must be compensated since the capacitance can cause an overcompensated or an undercompensated network. An uncompensated distribution network may cause the zero sequence current and voltage becoming too low so that the earth-fault protections do not detect an earth-fault. After the comparison of the two earth-fault functions it can be concluded that there is a minor difference between the both functions. There are some deviations in the test results conducted in a laboratory environment. It is not possible to state which one of the functions that is the most suitable to use in real power distribution networks, since no such tests have been conducted in this study. The authors of this thesis have presented some advantages and disadvantages of the two earth-fault functions
Bassam, Diraoui. "Lokal kompensering i Mellanspänningsnät." Thesis, Mittuniversitetet, Avdelningen för elektronikkonstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-30992.
Full textMagnusson, Johan. "Användande av lokala nollpunktsreaktorer : Hantering av kapacitiva jordfelsströmmar i kabelnät." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-136842.
Full textHusen, Khalid, and Mousa Fadi Imad. "Implementation Av Reläskyddssamverkan : En studie om en effektiv reläskyddssamverkan med hjälp av längsdifferentialskyddets kommunikationskanaler." Thesis, KTH, Hälsoinformatik och logistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296485.
Full textA transmission line is the part of the electrical system that transfers current from power stations to the end-user. Therefore, it is of importance that a transmission line stays always protected. The purpose of this bachelor thesis is to develop and test a configuration for teleprotection scheme communication between two protective relays with distance and earth fault protection using line differential protection communication channels, that is to protect the electrical grid and coordinate tripping time. The configuration has been developed with the software ABB PCM600, and the chosen functions are adequate functions for distance and earth fault protection and the Teleprotection scheme. The testing has been divided into two parts. Primarily, the functionality of distance and earth fault protection has been tested and verified on each one of the protective relays, that is to ensure the independent functionality of each one of the protective relays with distance and earth fault protection in case there is no Teleprotection scheme functioning. next, the sending and receiving functionality of the teleprotection scheme between the protective relays with distance protection and earth fault protection has been controlled to be possibly functioning through using only a fiber-optic cable. A functioning and reliable Teleprotection scheme with communication between two protective relays could be verified functioning through using line differential protection communication channels for distance and earth fault protection. The Teleprotection scheme strengthened the distance protection and earth fault protection through acceleration of trip signal, and as a consequent coordinating the trip time in case of fault detection. Direct communication between protective relay using fiber-optic cable has proven to be useful and applicable, and a using of such implementation is possible for isolated electrical line and facilities and also micro grids that does not require continuous monitoring and control.