Academic literature on the topic 'Joule'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Joule.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Joule"
Renata, Sena Sangga, Tri Wahyu Suprayogi, A. T. Soelih Estoepangestie, R. T. Santanu Adikara, Benjamin Chr Tehupuring, and Sri Hidanah. "PENGARUH PENEMBAKAN LASERPUNKTUR PADA TITIK REPRODUKSI ITIK CAMPBELL (Anas platyrhynchos domesticus) BETINA TERHADAP PRODUKTIVITAS TELUR." Ovozoa : Journal of Animal Reproduction 8, no. 1 (April 6, 2020): 17. http://dx.doi.org/10.20473/ovz.v8i1.2019.17-21.
Full textRahayu Kusdarwati, Aprilia Putri Astutie, Sudarno,. "Induksi Kematangan Gonad Induk Jantan Kerang Abalone (Haliotis asinina) Dengan Metode Laserpunktur [Induction Of Gonad Maturity Males Broodstock Abalone Shell (Haliotis asinina) With Laserpunctur Methods ]." Jurnal Ilmiah Perikanan dan Kelautan 4, no. 1 (January 24, 2019): 7. http://dx.doi.org/10.20473/jipk.v4i1.11576.
Full textMashour, G. A. "Joule Thief?" Science Translational Medicine 4, no. 123 (February 29, 2012): 123ec36. http://dx.doi.org/10.1126/scitranslmed.3003900.
Full textStever, S. L., F. Couchot, V. Sauvage, and N. Coron. "Benefits of Bolometer Joule Stepping and Joule Pulsing." Journal of Low Temperature Physics 199, no. 1-2 (December 17, 2019): 110–17. http://dx.doi.org/10.1007/s10909-019-02302-7.
Full textPolii, Janny Franka. "OSEANOGRAFI FISIKA PERAIRAN TELUK AMURANG MENURUT PERIODE UMUR BULAN." JURNAL PERIKANAN DAN KELAUTAN TROPIS 8, no. 1 (August 5, 2012): 17. http://dx.doi.org/10.35800/jpkt.8.1.2012.230.
Full textIlahi, Wahyu Nur, Mochamad Mas’ud, and Miftachul Huda. "PENGARUH JENIS ELEKTRODA E6013 PADA PENGELASAN SMAW TERHADAP SIFAT FISIK DAN MEKANIS BAJA KONTRUKSI JIS G3350." Journal Mechanical and Manufacture Technology (JMMT) 4, no. 2 (October 25, 2023): 68–76. http://dx.doi.org/10.35891/jmmt.v4i2.4426.
Full textSuryadi, Amin Suhadi, Dedi Priadi, and E. S. Siradj. "Analisa Gaya Penekanan pada Proses ECAP Batang Kuningan CuZn 70/30." Majalah Ilmiah Pengkajian Industri 8, no. 1 (July 29, 2019): 39–46. http://dx.doi.org/10.29122/mipi.v8i1.3646.
Full textGonzalez, A., V. Zhukova, M. Ipatov, P. Corte-Leon, J. M. Blanco, and A. Zhukov. "Effect of Joule heating on GMI and magnetic properties of Fe-rich glass-coated microwires." AIP Advances 12, no. 3 (March 1, 2022): 035021. http://dx.doi.org/10.1063/9.0000290.
Full textFALCONI, C., A. DAMICO, and Z. WANG. "Wireless Joule nanoheaters." Sensors and Actuators B: Chemical 127, no. 1 (October 20, 2007): 54–62. http://dx.doi.org/10.1016/j.snb.2007.07.002.
Full textCrawley, Frank. "Joule was right!" Loss Prevention Bulletin 166, no. 1 (August 1, 2002): 5. http://dx.doi.org/10.1205/026095702760197919.
Full textDissertations / Theses on the topic "Joule"
Lerou, Pieter-Paul Patrick Maurits. "Micromachined Joule-Thomson cryocooler." Enschede : University of Twente [Host], 2007. http://doc.utwente.nl/57770.
Full textAlves, Paula Portugal. "A experiência de Joule revisitada." Master's thesis, FCT - UNL, 2008. http://hdl.handle.net/10362/1836.
Full textO presente trabalho pretende ser um contributo para o ensino experimental da Física tendo como tema de fundo a Energia. A histórica Experiência de Joule que demonstrou a equivalência entre trabalho e calor é o ponto de partida para a construção de alguns equipamentos científicos que permitem demonstrar esta equivalência e a conversão de energia nas suas várias formas. A Experiência de Joule é transcrita dos documentos da época e explorada à luz dos conhecimentos actuais. Descreve-se o funcionamento de aparelhos capazes de gerar energia eléctrica a partir de movimento ou de diferença de temperatura, dínamos e células de Peltier, respectivamente. No último capítulo, constituindo o coração deste trabalho, são descritos equipamentos científicos construídos em laboratório. Cada equipamento está devidamente enquadrado em termos curriculares, no ensino básico e/ou secundário. Apresenta-se o princípio subjacente ao seu funcionamento bem como sugestões didácticas da sua aplicação e respectivos objectivos específicos. Todos os equipamentos foram testados em laboratório e os resultados recolhidos são apresentados e tratados quantitativamente quando se justifique. A descrição exaustiva (em Apêndice) das várias etapas de construção de alguns equipamentos permite a sua concretização por professores e alunos. Os materiais utilizados são fáceis de adquirir e de custo acessível à grande maioria das Escolas.
Mao, Jie. "Joule heating in magnetohydrodynamic duct flows." Thesis, Coventry University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492355.
Full textWandt, Christoph. "Development of a Joule-class Yb." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-172162.
Full textSilva, Fabio Cesar Siqueira da. "Formação de nanoestruturas magnéticas por aquecimento Joule." [s.n.], 2000. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278229.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-07-26T19:11:29Z (GMT). No. of bitstreams: 1 Silva_FabioCesarSiqueirada_D.pdf: 1575771 bytes, checksum: aedeb8f599f29d9b404e115c6e82444d (MD5) Previous issue date: 2000
Resumo: Nesta tese discutimos os processos de formação e controle de nanoestruturas magnéticas nas ligas binárias de composição Cu90Co10 e Cu85Co15 e na liga amorfa de composição Fe86Zr7Cu1 B6 através da técnica de tratamento térmico por aquecimento Joule. Duas formas de ministrar o aquecimento Joule são apresentadas: através da aplicação direta da corrente de tratamento e por variação linear da corrente de tratamento. Também discutimos os efeitos das nanoestruturas formadas nas propriedades magnéticas dos materiais acima mencionados com ênfase nas aplicações técnicas destes materiais. Em particular, estudamos em detalhe o efeito da distribuição de tamanho dos grâos nanocristalinos e das interações entre eles. As conclusões se baseiam em resultados de medidas estruturais (difração de raio-X e microscopia eletrônica de transmissão e magnéticas (curvas de histerese, magnetotransporte, susceptibilidade AC) além de simulações numéricas usando modelos da literatura e desenvolvidos no nosso grupo
Abstract: In this thesis, we discuss the processes of formation and control of magnetic nanostructures in binary alloys of composition Cu90 Co10 and Cu85 Co15, and in the amorphous alloy of composition Fe86 Zr7 Cu1 B6 through thermal annealing using the Joule heating technique. We present two diferent ways to control the Joule heating: by directly applying the annealing current, and through linearly varying the applied current. Also, we discuss the effects of the nanostructures on the magnetic properties of the above mentioned materials always stressing the importance of these properties for technical applications. In particular, we studied, in detail, the effect of the grain size distribution and the interaction between grains. The conclusions are based on structural (X-ray diraction, and transmission electron microscopy), and magnetic (hysteresis curves, magnetotransport, and AC susceptibility) measurements. We also performed numerical simulations using existing models and new models developed in our grou
Doutorado
Física
Doutor em Ciências
Siedentopf, Sandra [Verfasser], and Reinhard [Akademischer Betreuer] Szibor. "Untersuchungen zum Verletzungspotential handelsüblicher Soft-Air-Waffen mit einer Geschossenergie zwischen 0,08 Joule und 0,5 Joule / Sandra Siedentopf. Betreuer: Reinhard Szibor." Magdeburg : Universitätsbibliothek, 2015. http://d-nb.info/1079273174/34.
Full textMachate, Malgorzata S. "Joule heat effects on reliability of RF MEMS switches." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-1007103-115232/.
Full textHasbach, Ximena. "Natural carbonaceous materials for use in transparent Joule heaters." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122181.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 35).
Natural carbonaceous materials have the potential to be used in a new class of more economically and environmentally sound electronic devices due to their tunable conductivity as well as robust mechanical and thermal properties. This study aims to explore the potential of steam cracker tar (SCT), a byproduct of ethylene production, for use in conductive applications, specifically transparent Joule heaters. The SCT was made into thin films using both rod-rolling and spray-coating methods. After the superior uniformity of the rod-rolled films was observed, a 2 laser cutter was used to anneal the rod-rolled films with the intention of increasing their sp² content and thus improving their conductivity. First the power and then the z-defocusing of the laser were varied, and the ability of the resulting films to heat was tested with an applied voltage. To test the conductivity and heating capabilities of the annealed SCT films, 60 volts were applied, the current measured, and the number of degrees heated measured with a thermal camera software. A combination of Raman spectroscopy and profilometry was used to characterize the films. The film with the best heating capabilities was found to be the one annealed with 8% laser power and 0.2 inch z-defocus. This film was observed to heat to 35 degrees Celsius, and was demonstrated to efficiently de-ice a frozen sheet of tempered glass. Future work in this study will focus on finding ways to improve conductivity in SCT films with better transparency.
by Ximena Hasbach.
S.B.
S.B. Massachusetts Institute of Technology, Department of Materials Science and Engineering
Barabadi, Banafsheh. "Transient Joule heating in nano-scale embedded on-chip interconnects." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/51786.
Full textDaguilh, Thad. "A joule heating mechanism for high-speed fused filament fabrication." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123262.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (page 31).
Extrusion-based additive manufacturing, known as fused filament fabrication (FFF), is one the most accessible methods of rapid prototyping, capable of handling a wide variety of engineering thermoplastics. Productivity limitations hinder the further application of FFF to both prototyping and production. An FFF system consists of three synchronized processes: heat conduction into the feedstock, gantry speed, and extrusion of the feedstock by a pinch wheel mechanism. Each one of these processes can become a rate-limiting factor for prints. This work explores resistive joule heating as a method to increase heat transfer into an electrically conductive composite feedstock. This requires usage of an electrically insulating liquefier in order to co-locate both conduction and joule heating. A prototype mechanism was designed and fabricated including an anodized aluminum liquefier capable of printing. This was tested and no significant difference in print times were noted because of a failure in the system due to a current jump around the joule heating section. Although physical tests were not a success, a LabVIEW VI was created for future testing. In addition, modeling was performed to conclude that a 2.85mm PLA filament would be used in the range of 80-100V and 0.2-0.25A with a joule heating length of 0.75cm in the system in order to reach an extrusion rate of 200 cm³ /hr.
by Thad Daguilh.
S.B.
S.B. Massachusetts Institute of Technology, Department of Mechanical Engineering
Books on the topic "Joule"
John Rylands University Library of Manchester., ed. Joule centenary exhibition. [Manchester: John Rylands University Library of Manchester, 1989.
Find full textMaytal, Ben-Zion, and John M. Pfotenhauer. Miniature Joule-Thomson Cryocooling. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-8285-8.
Full textMaytal, Ben-Zion. Miniature Joule-Thomson Cryocooling: Principles and Practice. New York, NY: Springer New York, 2013.
Find full textEuropean Commission. Directorate-General XII, Science, Research, and Development, ed. Non-nuclear energy programme, 1990-1994: JOULE II. Brussels: Directorate-General Science, Research, and Development, 1998.
Find full textGlennie, Sarah. The Barry Joule Archive: Works on paper attributed to Francis Bacon. Dublin: Irish Museum of Modern Art, 2000.
Find full textSebastiani, Fabio. I fluidi imponderabili: Calore ed elettricità da Newton a Joule. Bari [Italy]: Dedalo, 1990.
Find full textMellor, David. The Barry Joule archive: Works on paper attributed to Francis Bacon. Dublin: Irish Museum of Modern Art, 2000.
Find full textH, Saiyed Naseem, Nyland Ted W, and United States. National Aeronautics and Space Administration., eds. Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device. [Washington, D.C.]: NASA, 1990.
Find full textPapell, S. Stephen. Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device. [Washington, D.C.]: NASA, 1990.
Find full textBook chapters on the topic "Joule"
Weik, Martin H. "joule." In Computer Science and Communications Dictionary, 849. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_9727.
Full textGooch, Jan W. "Joule." In Encyclopedic Dictionary of Polymers, 407. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6606.
Full textde Oliveira, Mário J. "Joule Principle." In Equilibrium Thermodynamics, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36549-2_1.
Full textde Oliveira, Mário J. "Joule Principle." In Equilibrium Thermodynamics, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53207-2_1.
Full textGooch, Jan W. "Joule (J)." In Encyclopedic Dictionary of Polymers, 903. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_14066.
Full textGooch, Jan W. "Joule-Thomson Effect." In Encyclopedic Dictionary of Polymers, 407–8. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6607.
Full textHerwig, Heinz. "Joulesche Wärme (Joule heating)." In Wärmeübertragung A-Z, 97–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_23.
Full textHaslach, Henry W. "Electromagnetism and Joule Heating." In Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure, 257–68. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7765-6_10.
Full textZohdi, Tarek I. "Coupled Effects: Joule-Heating." In Electromagnetic Properties of Multiphase Dielectrics, 63–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28427-4_6.
Full textMaytal, Ben-Zion, and John M. Pfotenhauer. "Cryocoolers: The Common Principle." In Miniature Joule-Thomson Cryocooling, 3–36. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-8285-8_1.
Full textConference papers on the topic "Joule"
Lerou, P. P. P. M., H. J. M. ter Brake, H. V. Jansen, J. F. Burger, H. J. Holland, H. Rogalla, J. G. Weisend, et al. "MICROMACHINED JOULE-THOMSON COOLERS." In ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC, Vol. 52. AIP, 2008. http://dx.doi.org/10.1063/1.2908606.
Full textVahdat, Amin, Alvin Lebeck, and Carla Schlatter Ellis. "Every joule is precious." In the 9th workshop. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/566726.566735.
Full textRiggio, Roberto, Dejene Boru, and Tinku Rasheed. "Joule: Software-defined energy metering." In NOMS 2014 - 2014 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2014. http://dx.doi.org/10.1109/noms.2014.6838274.
Full textPlyushchenkov, B., and A. Nikitin. "Electroacoustic Logging and Joule Heating." In Saint Petersburg 2012. Netherlands: EAGE Publications BV, 2012. http://dx.doi.org/10.3997/2214-4609.20143618.
Full textKohno, M., A. Tanabe, Y. Kuwamoto, H. Kubota, and Y. Takata. "Flexible Joule-Thomson Micro-Refrigerator." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82215.
Full textRumble, Stephen M., Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zeldovich. "Apprehending joule thieves with cinder." In the 1st ACM workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1592606.1592618.
Full textHsu, I., S. Wu, E. Osborne, I. Hsu, S. Wu, and E. Osborne. "Stacked planar Joule-Thomson cryocooler." In 32nd Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-2472.
Full textAubon, C. R., and W. J. A. Powell. "Joule-Thomson Cooling - An Overview." In Recent Developments in Infrared Components and Subsystems, edited by Charles T. Elliott. SPIE, 1988. http://dx.doi.org/10.1117/12.945535.
Full textZhang, Z., Q. He, Z. Li, B. Han, Y. Lu, J. Lan, S. Li, and Y. Fu. "The Joule Balance in orogress." In 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6250988.
Full textXie, Xudong, Ping Li, Deyan Zhu, Guanzhong Wang, Liquan Wang, Xiangxu Chai, Dongbing Liu, Bin Feng, Yukun Jing, and Qingguo Yang. "Kilo-joule back lighting terminal system." In Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology, edited by Xuanming Duan, Xiong Li, Xiangang Luo, Xiaoliang Ma, Mingbo Pu, and Rui Zhou. SPIE, 2019. http://dx.doi.org/10.1117/12.2516755.
Full textReports on the topic "Joule"
Slaughter, D., C. Oirth, and J. Woodworth. Mega-joule experiment area study, 1989. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/135500.
Full textGross, Andrew John. Micro-scale heat-exchangers for Joule-Thomson cooling. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1147518.
Full textBane, Karl, Gennady Stupakov, and Erion Gjonaj. Estimate of Joule Heating in a Flat Dechirper. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1344865.
Full textShimko, Martin A., and Paul M. Dunn. Combined Reverse-Brayton Joule Thompson Hydrogen Liquefaction Cycle. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1345523.
Full textShverdin, M. Final Report on the Joule-Scale Experimental Demonstration. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/945501.
Full textEyler, L. L., R. J. Skarda, R. S. III Crowder, D. S. Trent, C. R. Reid, and D. L. Lessor. Physical and numerical modeling of Joule-heated melters. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/6501620.
Full textAgarwal, Varija, and Donna Post Guillen. Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1097183.
Full textKlinger, L. M., and P. L. Abellera. Joule-heated glass furnace processing of a highly aqueous hazardous waste stream. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6425267.
Full textFreeman, C. J., G. P. Abrigo, P. J. Shafer, and R. A. Merrill. Literature review of arc/plasma, combustion, and joule-heated melter vitrification systems. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/105103.
Full textKELLY SE. A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1047859.
Full text