Academic literature on the topic 'Junction Field-Effect Transistor(JFET)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Junction Field-Effect Transistor(JFET).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Junction Field-Effect Transistor(JFET)"
Marcoux, J., J. Orchard-Webb, and J. F. Currie. "Complementary metal oxide semiconductor-compatible junction field-effect transistor characterization." Canadian Journal of Physics 65, no. 8 (August 1, 1987): 982–86. http://dx.doi.org/10.1139/p87-156.
Full textBargieł, Kamil, Damian Bisewski, and Janusz Zarębski. "Modelling of Dynamic Properties of Silicon Carbide Junction Field-Effect Transistors (JFETs)." Energies 13, no. 1 (January 1, 2020): 187. http://dx.doi.org/10.3390/en13010187.
Full textBLALOCK, BENJAMIN J., SORIN CRISTOLOVEANU, BRIAN M. DUFRENE, F. ALLIBERT, and MOHAMMAD M. MOJARRADI. "THE MULTIPLE-GATE MOS-JFET TRANSISTOR." International Journal of High Speed Electronics and Systems 12, no. 02 (June 2002): 511–20. http://dx.doi.org/10.1142/s0129156402001423.
Full textEhiagwina, Frederick Ojiemhende, Olufemi Oluseye Kehinde, Lateef Olashile Afolabi, Hassan Jimoh Onawola, and Nurudeen Ajibola Iromini. "Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET)." International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems 5, no. 3 (September 27, 2016): 133. http://dx.doi.org/10.11601/ijates.v5i3.168.
Full textCasady, J. B., D. C. Sheridan, A. Ritenour, V. Bondarenko, and R. Kelley. "High Temperature Performance of Normally-off SiC JFET's Compared to Competing Approaches." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2010, HITEC (January 1, 2010): 000152–59. http://dx.doi.org/10.4071/hitec-jcasady-tp23.
Full textLee, Hyeyoung, Jin-A. Jeon, Jinyong Kim, Hyunsu Lee, Moo Hyun Lee, Manwoo Lee, Seungcheol Lee, Hwanbae Park, and Sukjune Song. "Measurement of Switching Performance of Pixelated Silicon Sensor Integrated with Field Effect Transistor." Sensors 19, no. 24 (December 17, 2019): 5580. http://dx.doi.org/10.3390/s19245580.
Full textChaw, Chaw Su Nandar Hlaing, and Thiri Nwe. "Analysis on Band Layer Design and J-V characteristics of Zinc Oxide Based Junction Field Effect Transistor." Journal La Multiapp 1, no. 2 (June 21, 2020): 14–21. http://dx.doi.org/10.37899/journallamultiapp.v1i2.108.
Full textPerez, S., A. M. Francis, J. Holmes, and T. Vrotsos. "Silicon Carbide Junction Field Effect Transistor Compact Model for Extreme Environment Integrated Circuit Design." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2021, HiTEC (April 1, 2021): 000118–22. http://dx.doi.org/10.4071/2380-4491.2021.hitec.000118.
Full textKaneko, Mitsuaki, Ulrike Grossner, and Tsunenobu Kimoto. "SiC Vertical-Channel n- and p-JFETs Fully Fabricated by Ion Implantation." Materials Science Forum 963 (July 2019): 841–44. http://dx.doi.org/10.4028/www.scientific.net/msf.963.841.
Full textCasady, Jeff B., David C. Sheridan, Robin L. Kelley, Volodymyr Bondarenko, and Andrew Ritenour. "A Comparison of 1200 V Normally-OFF & Normally-on Vertical Trench SiC Power JFET Devices." Materials Science Forum 679-680 (March 2011): 641–44. http://dx.doi.org/10.4028/www.scientific.net/msf.679-680.641.
Full textDissertations / Theses on the topic "Junction Field-Effect Transistor(JFET)"
Ding, Hao. "FOUR TERMINAL JUNCTION FIELD-EFFECT TRANSISTOR MODEL FOR COMPUTER-AIDED DESIGN." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3129.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Wake, D. "The development of an indium gallium arsenide junction field effect transistor for use in optical receivers." Thesis, University of Surrey, 1987. http://epubs.surrey.ac.uk/843424/.
Full textSong, Shiunn Luen Steven 1960. "Characterization and design of the complementary JFET LAMBDA-DIODE SRAM." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276882.
Full textHamieh, Youness. "Caractérisation et modélisation du transistor JFET en SiC à haute température." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00665817.
Full textLaariedh, Farah. "Technologie d’intégration monolithique des JFET latéraux." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0031/document.
Full textSilicon carbide (SiC) a semiconductor is as wide band gap, notable for its physical properties located between silicon and diamond. The inherent properties of silicon carbide (SiC) high thermal conductivity, and high breakdown voltage make it a very promising material for high power, high temperature and high-frequency device applications. The thesis focused on the removal of technological barriers to achieve lateral components JFET (Junction Field Effect Transistor) and monolithically integrated in SiC-4H substrates. The objective is to realize an arm of inverter integrated there SIC with two floors command and power. Initially, we started this thesis by a characterization of two lots of components JFET with channels N and P realized during two previous ANR this thesis. In this study, we extracted several positive points, such, the breakdown voltage of the JFET power and monolithic integration of low voltage JFET. But we have also highlighted the need to optimize the structure of components and improve some technological steps, mainly the definition channels by ion implantation, the ohmic contact and deep etching. Extensive to achieve ohmic contact on SiC P type and methods for performing deep etching in SiC studies have been developed. These studies have resulted in a low resistance comparable to the state of the art world contact, having sizes in higher current and therefore a better modulation. For etching, a hard mask to silicon and nickel (NiSi) has enabled us to develop a novel method that allows deep etching of SiC JFETs achieve integrated structures. All these technological improvements allowed us to get new batches of P and N JFET integrated on the same chip components with better performance compared to previous achievements, especially with conduction channels 10 to 100 times important. We also got a modulation current Ids as a function of the voltage Vgs on a large number of JFET significantly increasing the performance compared to previous batches
Granier, André. "Etude et réalisation d'un transistor JFET vertical silicium et son évaluation en hyperfréquence." Grenoble 1, 1993. http://www.theses.fr/1993GRE10146.
Full textGuédon, Florent Dominique. "Power converters with normally-on SiC JFETs." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610394.
Full textFalahi, Khalil El. "Contribution à la conception de driver en technologie CMOS SOI pour la commande de transistors JFET SiC pour un environnement de haute température." Thesis, Lyon, INSA, 2012. http://www.theses.fr/2012ISAL0056/document.
Full textIn aeronautics, electrical systems progressively replace mechanical and hydraulic control systems. If the electronics can stand the absence of cooling, the immediate advantages will be the reduction of mass, increased performances, admissible reliability and thus reduction of costs. In aircraft, some important steps have already been performed successfully when substituting standard systems by electrical control system such as electrical brakes, thrust reverser, electrical actuators for flight control… Large band gap semiconductors (SiC, GaN…) have eased the operation in high temperature over the last decade and let overcome a weakness of conventional silicon systems (Si). High temperature power components such as Schottky diodes or JFET transistors, are already commercially available for a use up to 220°C, limited by package. Moreover inverters based on SiC JFET transistors have been realized and characterized at high temperature. Finally the control part of these power systems needs to be designed for harsh environment. It is in this context of lack of integrated control part that the FNRAE COTECH project and my doctoral research have been built. Based on a state of the art about drivers, the complex link between electronic and temperature and the potentialities of CMOS Silicon-On-Insulator technology (SOI) for high temperature applications have been underlined. The characterization of commercial SOI drivers gives essential data on these systems and their behavior at high temperature. These measurements also highlight the practical limitations of SOI technologies. The main part of this manuscript concerns the design and characterization of functions or IPs for high temperature JFET SiC driver. Two SOI runs in TFSmart1 have been realized. The developed functions include the driver output stage, associated buffers and protection functions. The drivers have been tested from -50°C up to 250°C without failure under short time-range. Moreover, an original protection function has been demonstrated against the short-circuit of an inverter leg. This function allows overcoming the main limitation of the normally on JFET transistor. Finally, an inverter module has been built for in-situ test of these new drivers
Sadik, Diane-Perle. "On Reliability of SiC Power Devices in Power Electronics." Doctoral thesis, KTH, Elkraftteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207763.
Full textKiselkarbid (SiC) är ett bredbandgapsmaterial (WBG) som har flera fördelar,såsom högre maximal elektrisk fältstyrka, lägre ON-state resitans, högreswitch-hastighet och högre maximalt tillåten arbetstemperatur jämförtmed kisel (Si). I spänningsområdet 1,2-1,7 kV förutses att effekthalvledarkomponenteri SiC kommer att ersätta Si Insulated-gate bipolar transistorer(IGBT:er) i tillämpningar där hög verkningsgrad, hög arbetstemperatur ellervolymreduktioner eftersträvas. Förstahandsvalet är en SiC Metal-oxidesemiconductor field-effect transistor (MOSFET) som är spänningsstyrd ochnormally-OFF, egenskaper som möjliggör enkel implementering i konstruktionersom använder Si IGBTer.I detta arbete undersöks tillförlitligheten av SiC komponenter, specielltSiC MOSFET:en. Först undersöks möjligheten att parallellkoppla tvådiskretaSiC MOSFET:ar genom statiska och dynamiska prov. Parallellkopplingbefanns vara oproblematisk. Sedan undersöks drift av tröskelspänning ochbody-diodens framspänning genom långtidsprov. Ocksådessa tillförlitlighetsaspekterbefanns vara oproblematiska. Därefter undersöks kapslingens inverkanpåchip:et genom modellering av parasitiska induktanser hos en standardmoduloch inverkan av dessa induktanser pågate-oxiden. Modellen påvisaren obalans mellan de parasitiska induktanserna, något som kan varaproblematiskt för snabb switchning. Ett långtidstest av inverkan från fuktpåkant-termineringar för SiC-MOSFET:ar och SiC-Schottky-dioder i sammastandardmodul avslöjar tidiga tecken pådegradering för vissa moduler somvarit utomhus. Därefter undersöks kortslutningsbeteende för tre typer (bipolärtransistor,junction-field-effect transistor och MOSFET) av 1.2 kV effekthalvledarswitchargenom experiment och simuleringar. Behovet att stänga avkomponenten snabbt stöds av detaljerade elektrotermiska simuleringar för allatre komponenter. Konstruktionsriktlinjer för ett robust och snabbt kortslutningsskyddtas fram. För var och en av komponenterna byggs en drivkrets medkortslutningsskydd som valideras experimentellt. Möjligheten att konstrueradiodlösa omvandlare med SiC MOSFET:ar undersöks med fokus påstötströmmargenom body-dioden. Den upptäckta felmekanismen är ett oönskat tillslagav den parasitiska npn-transistorn. Slutligen utförs en livscykelanalys(LCCA) som avslöjar att introduktionen av SiC MOSFET:ar i existerandeIGBT-konstruktioner är ekonomiskt intressant. Den initiala investeringensparas in senare pågrund av en högre verkningsgrad. Dessutom förbättrastillförlitligheten, vilket är fördelaktigt ur ett riskhanteringsperspektiv. Dentotala investeringen över 20 år är ungefär 30 % lägre för en omvandlare medSiC MOSFET:ar även om initialkostnaden är 30 % högre.
QC 20170524
Chevalier, Florian. "Conception, fabrication et caractérisation de transistors à effet de champ haute tension en carbure de silicium et de leur diode associée." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-01016687.
Full textBooks on the topic "Junction Field-Effect Transistor(JFET)"
Soclof, Sidney. Junction field-effect transistors (JFETS): Principles and applications. Boston: ArtechHouse, 1996.
Find full textBlaser, Markus. Monolithically integrated InGaAs/Inp photodiode-junction field-effect transistor receivers for fiber-optic telecommunication. Konstanz: Hartung-Gorre, 1997.
Find full textAmara, Amara, and Rozeau Olivier, eds. Planar double-gate transistor: From technology to circuit. [Dordrecht?]: Springer, 2009.
Find full textSolymar, L., D. Walsh, and R. R. A. Syms. Principles of semiconductor devices. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0009.
Full textBook chapters on the topic "Junction Field-Effect Transistor(JFET)"
Prasad, R. "Transistor Bipolar Junction (BJT) and Field-Effect (FET) Transistor." In Undergraduate Lecture Notes in Physics, 457–581. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65129-9_6.
Full textKelner, G., M. Shur, S. Binari, K. Sleger, and H. Kong. "A High Transconductance β-SiC Buried-Gate Junction Field Effect Transistor." In Springer Proceedings in Physics, 184–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75048-9_38.
Full textDubey, Avashesh, Rakhi Narang, Manoj Saxena, and Mridula Gupta. "Floating Gate Junction-Less Double Gate Radiation Sensitive Field Effect Transistor (RADFET) Dosimeter: A Simulation Study." In Springer Proceedings in Physics, 571–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_89.
Full text"Junction Field-Effect Transistor." In Complete Guide to Semiconductor Devices, 191–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118014769.ch23.
Full textWilmshurst, T. H. "Junction field effect transistor." In Analog Circuit Techniques with Digital Interfacing, 132–36. Elsevier, 2001. http://dx.doi.org/10.1016/b978-075065094-6/50010-5.
Full textConference papers on the topic "Junction Field-Effect Transistor(JFET)"
Shili, K., M. Ben Karoui, R. Gharbi, and S. Ferrero. "Structural and electrical characterization of the 4H-SiC based junction field effect transistor (JFET)." In 2013 International Conference On Electrical Engineering and Software Applications (ICEESA). IEEE, 2013. http://dx.doi.org/10.1109/iceesa.2013.6578475.
Full textOu, Tzu-Min, Tomoko Borsa, and Bart Van Zeghbroeck. "Graphene junction field-effect transistor." In 2015 73rd Annual Device Research Conference (DRC). IEEE, 2015. http://dx.doi.org/10.1109/drc.2015.7175594.
Full textZeisse, C. R., R. Nguyen, T. T. Vu, L. J. Messick, and K. L. Moazed. "An indium phosphide diffused junction field effect transistor." In International Conference on Indium Phosphide and Related Materials. IEEE, 1990. http://dx.doi.org/10.1109/iciprm.1990.203037.
Full textJahangir, Ifat, Shafat Jahangir, and Quazi Deen Mohd Khosru. "Transport characteristics of GaInAs nanowire junction field effect transistor." In 2012 IEEE International Conference on Electro/Information Technology (EIT 2012). IEEE, 2012. http://dx.doi.org/10.1109/eit.2012.6220771.
Full textBaca, A. G., J. C. Zolper, M. E. Sherwin, P. J. Robertson, R. J. Shul, A. J. Howard, D. J. Rieger, and J. F. Klem. "Complementary GaAs junction-gated heterostructure field effect transistor technology." In Proceedings of 1994 IEEE GaAs IC Symposium. IEEE, 1994. http://dx.doi.org/10.1109/gaas.1994.636920.
Full textVardhan Reddy, Isukapalli Vishnu, and Suman Lata Tripathi. "Double Gate-Pocket-Junction-less Tunnel Field Effect Transistor." In 2021 Devices for Integrated Circuit (DevIC). IEEE, 2021. http://dx.doi.org/10.1109/devic50843.2021.9455895.
Full textBenner, O., A. Lysov, C. Gutsche, G. Keller, C. Schmidt, W. Prost, and F. J. Tegude. "Junction field-effect transistor based on GaAs core-shell nanowires." In 2013 25th International Conference on Indium Phosphide and Related Materials (IPRM). IEEE, 2013. http://dx.doi.org/10.1109/iciprm.2013.6562589.
Full textTomioka, K., M. Yoshimura, and T. Fukui. "First Demonstration of Tunnel Field-Effect Transistor Using InGaAs/Si Junction." In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.e-4-3.
Full textJiang, Zhi, Yiqi Zhuang, Cong Li, and Wang Ping. "The hetero material gateand hetero-junction tunnel field-effect transistor with pocket." In 2014 IEEE 12th International Conference on Solid -State and Integrated Circuit Technology (ICSICT). IEEE, 2014. http://dx.doi.org/10.1109/icsict.2014.7021632.
Full textTripathi, Ball Mukund Mani, and Shyama Prasad Das. "Vertical Channel GaN Field Effect Transistor Without Junction for High Power Application." In 2018 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, 2018. http://dx.doi.org/10.1109/conecct.2018.8482384.
Full text