Academic literature on the topic 'K-fold validation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'K-fold validation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "K-fold validation"
Wong, Tzu-Tsung, and Po-Yang Yeh. "Reliable Accuracy Estimates from k-Fold Cross Validation." IEEE Transactions on Knowledge and Data Engineering 32, no. 8 (August 1, 2020): 1586–94. http://dx.doi.org/10.1109/tkde.2019.2912815.
Full textSoper, Daniel S. "Greed Is Good: Rapid Hyperparameter Optimization and Model Selection Using Greedy k-Fold Cross Validation." Electronics 10, no. 16 (August 16, 2021): 1973. http://dx.doi.org/10.3390/electronics10161973.
Full textWang, Ju E., and Jian Zhong Qiao. "Parameter Selection of SVR Based on Improved K-Fold Cross Validation." Applied Mechanics and Materials 462-463 (November 2013): 182–86. http://dx.doi.org/10.4028/www.scientific.net/amm.462-463.182.
Full textALPTEKIN, AHMET, and OLCAY KURSUN. "MISS ONE OUT: A CROSS-VALIDATION METHOD UTILIZING INDUCED TEACHER NOISE." International Journal of Pattern Recognition and Artificial Intelligence 27, no. 07 (November 2013): 1351003. http://dx.doi.org/10.1142/s0218001413510038.
Full textWong, Tzu-Tsung, and Nai-Yu Yang. "Dependency Analysis of Accuracy Estimates in k-Fold Cross Validation." IEEE Transactions on Knowledge and Data Engineering 29, no. 11 (November 1, 2017): 2417–27. http://dx.doi.org/10.1109/tkde.2017.2740926.
Full textFushiki, Tadayoshi. "Estimation of prediction error by using K-fold cross-validation." Statistics and Computing 21, no. 2 (October 10, 2009): 137–46. http://dx.doi.org/10.1007/s11222-009-9153-8.
Full textWiens, Trevor S., Brenda C. Dale, Mark S. Boyce, and G. Peter Kershaw. "Three way k-fold cross-validation of resource selection functions." Ecological Modelling 212, no. 3-4 (April 2008): 244–55. http://dx.doi.org/10.1016/j.ecolmodel.2007.10.005.
Full textNasution, Muhammad Rangga Aziz, and Mardhiya Hayaty. "Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter." Jurnal Informatika 6, no. 2 (September 5, 2019): 226–35. http://dx.doi.org/10.31311/ji.v6i2.5129.
Full textY.H. Ahmed, Falah, Yasir Hassan Ali, and Siti Mariyam Shamsuddin. "Using K-Fold Cross Validation Proposed Models for Spikeprop Learning Enhancements." International Journal of Engineering & Technology 7, no. 4.11 (October 2, 2018): 145. http://dx.doi.org/10.14419/ijet.v7i4.11.20790.
Full textJiang, Gaoxia, and Wenjian Wang. "Error estimation based on variance analysis of k -fold cross-validation." Pattern Recognition 69 (September 2017): 94–106. http://dx.doi.org/10.1016/j.patcog.2017.03.025.
Full textDissertations / Theses on the topic "K-fold validation"
Sood, Radhika. "Comparative Data Analytic Approach for Detection of Diabetes." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1544100930937728.
Full textOrding, Marcus. "Context-Sensitive Code Completion : Improving Predictions with Genetic Algorithms." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205334.
Full textInom området kontextkänslig kodkomplettering finns det ett behov av precisa förutsägande modeller för att kunna föreslå användbara kodkompletteringar. Den traditionella metoden för att optimera prestanda hos kodkompletteringssystem är att empiriskt utvärdera effekten av varje systemparameter individuellt och finjustera parametrarna. Det här arbetet presenterar en genetisk algoritm som kan optimera systemparametrarna med en frihetsgrad som är lika stor som antalet parametrar att optimera. Studien utvärderar effekten av de optimerade parametrarna på det studerade kodkompletteringssystemets pre- diktiva kvalitet. Tidigare utvärdering av referenssystemet utökades genom att även inkludera modellstorlek och slutledningstid. Resultaten av studien visar att den genetiska algoritmen kan förbättra den prediktiva kvali- teten för det studerade kodkompletteringssystemet. Jämfört med referenssystemet så lyckas det förbättrade systemet korrekt känna igen 1 av 10 ytterligare kodmönster som tidigare varit osedda. Förbättringen av prediktiv kvalietet har inte en signifikant inverkan på systemet, då slutledningstiden förblir mindre än 1 ms för båda systemen.
Piják, Marek. "Klasifikace emailové komunikace." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2018. http://www.nusl.cz/ntk/nusl-385889.
Full textBirba, Delwende Eliane. "A Comparative study of data splitting algorithms for machine learning model selection." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287194.
Full textDatapartitionering används vanligtvis i maskininlärning för att dela data i en tränings, test eller valideringsuppsättning. Detta tillvägagångssätt gör det möjligt för oss att hitta hyperparametrar för modellen och även uppskatta generaliseringsprestanda. I denna forskning genomförde vi en jämförande analys av olika datapartitionsalgoritmer på både verkliga och simulerade data. Vårt huvudmål var att undersöka frågan om hur valet avdatapartitioneringsalgoritm kan förbättra uppskattningen av generaliseringsprestanda. Datapartitioneringsalgoritmer som användes i denna studie var varianter av k-faldig korsvalidering, Kennard-Stone (KS), SPXY (partitionering baserat på gemensamt x-y-avstånd) och bootstrap-algoritm. Varje algoritm användes för att dela upp data i två olika datamängder: tränings- och valideringsdata. Vi analyserade sedan de olika datapartitioneringsalgoritmerna baserat på generaliseringsprestanda uppskattade från valideringen och den externa testuppsättningen. Från resultatet noterade vi att det avgörande för en bra generalisering är storleken på data. För alla datapartitioneringsalgoritmer som använts på små datamängder var klyftan mellan prestanda uppskattad på valideringen och testuppsättningen betydande. Vi noterade emellertid att gapet minskade när det fanns mer data för träning eller validering. För mycket eller för litet data i träningsuppsättningen kan också leda till dålig prestanda. Detta belyser vikten av att ha en korrekt balans mellan storlekarna på tränings- och valideringsmängderna. I vår studie var KS och SPXY de algoritmer med sämst prestanda. Dessa metoder väljer de mest representativa instanserna för att träna modellen, och icke-representativa instanser lämnas för uppskattning av modellprestanda.
Martins, Natalie Henriques. "Modelos de agrupamento e classificação para os bairros da cidade do Rio de Janeiro sob a ótica da Inteligência Computacional: Lógica Fuzzy, Máquinas de Vetores Suporte e Algoritmos Genéticos." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9502.
Full textA partir de 2011, ocorreram e ainda ocorrerão eventos de grande repercussão para a cidade do Rio de Janeiro, como a conferência Rio+20 das Nações Unidas e eventos esportivos de grande importância mundial (Copa do Mundo de Futebol, Olimpíadas e Paraolimpíadas). Estes acontecimentos possibilitam a atração de recursos financeiros para a cidade, assim como a geração de empregos, melhorias de infraestrutura e valorização imobiliária, tanto territorial quanto predial. Ao optar por um imóvel residencial em determinado bairro, não se avalia apenas o imóvel, mas também as facilidades urbanas disponíveis na localidade. Neste contexto, foi possível definir uma interpretação qualitativa linguística inerente aos bairros da cidade do Rio de Janeiro, integrando-se três técnicas de Inteligência Computacional para a avaliação de benefícios: Lógica Fuzzy, Máquina de Vetores Suporte e Algoritmos Genéticos. A base de dados foi construída com informações da web e institutos governamentais, evidenciando o custo de imóveis residenciais, benefícios e fragilidades dos bairros da cidade. Implementou-se inicialmente a Lógica Fuzzy como um modelo não supervisionado de agrupamento através das Regras Elipsoidais pelo Princípio de Extensão com o uso da Distância de Mahalanobis, configurando-se de forma inferencial os grupos de designação linguística (Bom, Regular e Ruim) de acordo com doze características urbanas. A partir desta discriminação, foi tangível o uso da Máquina de Vetores Suporte integrado aos Algoritmos Genéticos como um método supervisionado, com o fim de buscar/selecionar o menor subconjunto das variáveis presentes no agrupamento que melhor classifique os bairros (Princípio da Parcimônia). A análise das taxas de erro possibilitou a escolha do melhor modelo de classificação com redução do espaço de variáveis, resultando em um subconjunto que contém informações sobre: IDH, quantidade de linhas de ônibus, instituições de ensino, valor m médio, espaços ao ar livre, locais de entretenimento e crimes. A modelagem que combinou as três técnicas de Inteligência Computacional hierarquizou os bairros do Rio de Janeiro com taxas de erros aceitáveis, colaborando na tomada de decisão para a compra e venda de imóveis residenciais. Quando se trata de transporte público na cidade em questão, foi possível perceber que a malha rodoviária ainda é a prioritária
Luo, Shan. "Advanced Statistical Methodologies in Determining the Observation Time to Discriminate Viruses Using FTIR." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/math_theses/86.
Full textTandan, Isabelle, and Erika Goteman. "Bank Customer Churn Prediction : A comparison between classification and evaluation methods." Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411918.
Full textRadeschnig, David. "Modelling Implied Volatility of American-Asian Options : A Simple Multivariate Regression Approach." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-28951.
Full textBodin, Camilla. "Automatic Flight Maneuver Identification Using Machine Learning Methods." Thesis, Linköpings universitet, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165844.
Full textPo-YangYeh and 葉柏揚. "A Study on the Appropriateness of Repeating K-fold Cross Validation." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/6jc74q.
Full text國立成功大學
工業與資訊管理學系
105
K-fold cross validation is a popular approach for evaluating the performance of classification algorithms. The variance of accuracy estimate resulting from this approach is generally relatively large for conservative inference. Several studies therefore suggested to repeatedly perform K-fold cross validation for reducing the variance. Most of them did not consider the correlation among the repetitions of K-fold cross validation, and hence the variance could be underestimated. The purpose of this thesis is to study the appropriateness of repeating K-fold cross validation. We first investigate whether the accuracy estimates obtained from the repetitions of K-fold cross validation can be assumed to be independent. K-Nearest Neighbor algorithm with K = 1 is used to analyze the dependency relationships among the predictions of two repetitions of K-fold cross validation. Statistical methods are also proposed to test the strength of the dependency relationships. The experimental results on twenty data sets show that the predictions in two repetitions of K-fold cross validation are generally highly correlated, and the correlation will be higher as the number of folds increases. The results of a simulation study suggest that the K-fold cross validation with a small number of repetitions and a large number of folds should be adopted.
Book chapters on the topic "K-fold validation"
Torres-Sospedra, Joaquín, Carlos Hernández-Espinosa, and Mercedes Fernández-Redondo. "Improving Adaptive Boosting with k-Cross-Fold Validation." In Lecture Notes in Computer Science, 397–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11816157_46.
Full textChowdhury, Pinaki Roy, and K. K. Shukla. "On Generalization and K-Fold Cross Validation Performance of MLP Trained with EBPDT." In Advances in Soft Computing — AFSS 2002, 352–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45631-7_47.
Full textJiang, Ping, Zhigang Zeng, Jiejie Chen, and Tingwen Huang. "Generalized Regression Neural Networks with K-Fold Cross-Validation for Displacement of Landslide Forecasting." In Advances in Neural Networks – ISNN 2014, 533–41. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12436-0_59.
Full textDahliyusmanto, Tutut Herawan, Syefrida Yulina, and Abdul Hanan Abdullah. "A Feature Selection Algorithm for Anomaly Detection in Grid Environment Using k-fold Cross Validation Technique." In Advances in Intelligent Systems and Computing, 619–30. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51281-5_62.
Full textMunna, Md Tahsir Ahmed, Mirza Mohtashim Alam, Shaikh Muhammad Allayear, Kaushik Sarker, and Sheikh Joly Ferdaus Ara. "Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering." In Advances in Intelligent Systems and Computing, 451–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03402-3_31.
Full textMunna, Md Tahsir Ahmed, Mirza Mohtashim Alam, Shaikh Muhammad Allayear, Kaushik Sarker, and Sheikh Joly Ferdaus Ara. "Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering." In Lecture Notes in Networks and Systems, 1031–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12388-8_71.
Full textChen, Jiejie, Ping Jiang, Zhigang Zeng, and Boshan Chen. "R-RTRL Based on Recurrent Neural Network with K-Fold Cross-Validation for Multi-step-ahead Prediction Landslide Displacement." In Advances in Neural Networks – ISNN 2018, 468–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92537-0_54.
Full textWally, Youssef, Yara Samaha, Ziad Yasser, Steffen Walter, and Friedhelm Schwenker. "Personalized k-fold Cross-Validation Analysis with Transfer from Phasic to Tonic Pain Recognition on X-ITE Pain Database." In Pattern Recognition. ICPR International Workshops and Challenges, 788–802. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68780-9_59.
Full textMatei, Alexander, and Stefan Ulbrich. "Detection of Model Uncertainty in the Dynamic Linear-Elastic Model of Vibrations in a Truss." In Lecture Notes in Mechanical Engineering, 281–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_22.
Full textAli, ABM Shawkat. "K-means Clustering Adopting rbf-Kernel." In Data Mining and Knowledge Discovery Technologies, 118–42. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-960-1.ch006.
Full textConference papers on the topic "K-fold validation"
dos Santos, Priscila G. M., Ismael C. S. Araujo, Rodrigo S. Sousa, and Adenilton J. da Silva. "Quantum Enhanced k-fold Cross-Validation." In 2018 7th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2018. http://dx.doi.org/10.1109/bracis.2018.00041.
Full textJuda, P., P. Renard, and J. Straubhaar. "K-fold Cross-validation of Multiple-point Statistical Simulations." In Petroleum Geostatistics 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902239.
Full textAlippi, Cesare, and Manuel Roveri. "Virtual k-fold cross validation: An effective method for accuracy assessment." In 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 2010. http://dx.doi.org/10.1109/ijcnn.2010.5596899.
Full textNie, Yali, Laura De Santis, Marco Carratu, Mattias O'Nils, Paolo Sommella, and Jan Lundgren. "Deep Melanoma classification with K-Fold Cross-Validation for Process optimization." In 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2020. http://dx.doi.org/10.1109/memea49120.2020.9137222.
Full textMubang, Fred. "Using K-Fold Cross Validation and ResNet Ensembles to Predict Cooking States." In State Recognition symposium. RPAL, 2019. http://dx.doi.org/10.32555/2019.dl.017.
Full textYadav, Sanjay, and Sanyam Shukla. "Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification." In 2016 IEEE 6th International Conference on Advanced Computing (IACC). IEEE, 2016. http://dx.doi.org/10.1109/iacc.2016.25.
Full textKaral, Omer. "Performance comparison of different kernel functions in SVM for different k value in k-fold cross-validation." In 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2020. http://dx.doi.org/10.1109/asyu50717.2020.9259880.
Full textCaon, Daniel R. S., Asmaa Amehraye, Joseph Razik, Gerard Chollet, Rodrigo V. Andreao, and Chafic Mokbel. "Experiments on acoustic model supervised adaptation and evaluation by K-Fold Cross Validation technique." In 2010 5th International Symposium On I/V Communications and Mobile Network (ISVC). IEEE, 2010. http://dx.doi.org/10.1109/isvc.2010.5656264.
Full textTamilarasi, P., and R. Uma Rani. "Diagnosis of Crime Rate against Women using k-fold Cross Validation through Machine Learning." In 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). IEEE, 2020. http://dx.doi.org/10.1109/iccmc48092.2020.iccmc-000193.
Full textHu, Chao, Byeng D. Youn, and Pingfeng Wang. "Ensemble of Data-Driven Prognostic Algorithms With Weight Optimization and K-Fold Cross Validation." In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29182.
Full text