Academic literature on the topic 'Kähler- Einstein equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kähler- Einstein equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kähler- Einstein equation"
Zhang, Xi, and Xiangwen Zhang. "Generalized Kähler–Einstein Metrics and Energy Functionals." Canadian Journal of Mathematics 66, no. 6 (2014): 1413–35. http://dx.doi.org/10.4153/cjm-2013-034-3.
Full textPAN, LISHUANG, AN WANG, and LIYOU ZHANG. "ON THE KÄHLER–EINSTEIN METRIC OF BERGMAN–HARTOGS DOMAINS." Nagoya Mathematical Journal 221, no. 1 (2016): 184–206. http://dx.doi.org/10.1017/nmj.2016.4.
Full textZhang, Xi. "Hermitian Yang–Mills–Higgs Metrics on Complete Kähler Manifolds." Canadian Journal of Mathematics 57, no. 4 (2005): 871–96. http://dx.doi.org/10.4153/cjm-2005-034-3.
Full textVisinescu, Mihai. "Sasaki–Ricci flow equation on five-dimensional Sasaki–Einstein space Yp,q." Modern Physics Letters A 35, no. 14 (2020): 2050114. http://dx.doi.org/10.1142/s021773232050114x.
Full textAlekseevsky, Dmitri V., and Fabio Podestà. "Homogeneous almost-Kähler manifolds and the Chern–Einstein equation." Mathematische Zeitschrift 296, no. 1-2 (2019): 831–46. http://dx.doi.org/10.1007/s00209-019-02446-y.
Full textARVANITOYEORGOS, ANDREAS, IOANNIS CHRYSIKOS, and YUSUKE SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS." International Journal of Mathematics 24, no. 10 (2013): 1350077. http://dx.doi.org/10.1142/s0129167x13500778.
Full textLi, Chi. "On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold." Compositio Mathematica 148, no. 6 (2012): 1985–2003. http://dx.doi.org/10.1112/s0010437x12000334.
Full textSAKAGUCHI, MAKOTO. "FOUR-DIMENSIONAL N=2 SUPERSTRING BACKGROUNDS AND THE REAL HEAVENS." International Journal of Modern Physics A 11, no. 07 (1996): 1279–97. http://dx.doi.org/10.1142/s0217751x96000572.
Full textBiswas, Indranil. "Yang–Mills connections on compact complex tori." Journal of Topology and Analysis 07, no. 02 (2015): 293–307. http://dx.doi.org/10.1142/s1793525315500107.
Full textARVANITOYEORGOS, ANDREAS. "GEOMETRY OF FLAG MANIFOLDS." International Journal of Geometric Methods in Modern Physics 03, no. 05n06 (2006): 957–74. http://dx.doi.org/10.1142/s0219887806001399.
Full textDissertations / Theses on the topic "Kähler- Einstein equation"
Yi, Li. "Théorèmes d'extension et métriques de Kähler-Einstein généralisées." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0151/document.
Full textBook chapters on the topic "Kähler- Einstein equation"
Siu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.
Full textKoiso, Norihito. "On Rotationally Symmetric Hamilton's Equation for Kähler-Einstein Metrics." In Recent Topics in Differential and Analytic Geometry. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-001018-9.50015-4.
Full textLeBrun, Claude. "The Einstein‐Maxwell Equations, Extremal Kähler Metrics, and Seiberg‐Witten Theory." In The Many Facets of Geometry. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0003.
Full text