Academic literature on the topic 'KAM and Nekhoroshev theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'KAM and Nekhoroshev theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "KAM and Nekhoroshev theory"
Benettin, Giancarlo, Francesco Fassò, and Massimiliano Guzzo. "Nekhoroshev-Stability ofL4andL5in the Spatial Restricted Problem." International Astronomical Union Colloquium 172 (1999): 445–46. http://dx.doi.org/10.1017/s0252921100073097.
Full textGuzzo, Massimiliano. "Nekhoroshev Stability in Quasi-Integrable Degenerate Hamiltonian Systems." International Astronomical Union Colloquium 172 (1999): 443–44. http://dx.doi.org/10.1017/s0252921100073085.
Full textWiggins, S., and A. M. Mancho. "Barriers to transport in aperiodically time-dependent two-dimensional velocity fields: Nekhoroshev's theorem and "Nearly Invariant" tori." Nonlinear Processes in Geophysics 21, no. 1 (February 4, 2014): 165–85. http://dx.doi.org/10.5194/npg-21-165-2014.
Full textLi, Yong, and Yingfei Yi. "Nekhoroshev and KAM Stabilities in Generalized Hamiltonian Systems." Journal of Dynamics and Differential Equations 18, no. 3 (July 15, 2006): 577–614. http://dx.doi.org/10.1007/s10884-006-9025-2.
Full textBounemoura, Abed, and Stéphane Fischler. "A Diophantine duality applied to the KAM and Nekhoroshev theorems." Mathematische Zeitschrift 275, no. 3-4 (May 22, 2013): 1135–67. http://dx.doi.org/10.1007/s00209-013-1174-5.
Full textBounemoura, Abed, and Laurent Niederman. "Generic Nekhoroshev theory without small divisors." Annales de l’institut Fourier 62, no. 1 (2012): 277–324. http://dx.doi.org/10.5802/aif.2706.
Full textMoan, Per Christian. "On the KAM and Nekhoroshev theorems for symplectic integrators and implications for error growth." Nonlinearity 17, no. 1 (September 29, 2003): 67–83. http://dx.doi.org/10.1088/0951-7715/17/1/005.
Full textMacKay, R. S., and I. C. Percival. "Converse KAM: Theory and practice." Communications in Mathematical Physics 98, no. 4 (December 1985): 469–512. http://dx.doi.org/10.1007/bf01209326.
Full textSalamon, Dietmar, and Eduard Zehnder. "KAM theory in configuration space." Commentarii Mathematici Helvetici 64, no. 1 (December 1989): 84–132. http://dx.doi.org/10.1007/bf02564665.
Full textDelshams, Amadeu, and Pere Gutiérrez. "Effective Stability and KAM Theory." Journal of Differential Equations 128, no. 2 (July 1996): 415–90. http://dx.doi.org/10.1006/jdeq.1996.0102.
Full textDissertations / Theses on the topic "KAM and Nekhoroshev theory"
Saha, Prasenjit. "A perturbation method from KAM theory with applications to stellar and asteroidal motion." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315813.
Full textPageault, Pierre. "Fonctions de Lyapunov : une approche KAM faible." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00678325.
Full textViveros, Rogel Jorge. "An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19869.
Full textMandorino, Vito. "Théorie KAM faible et instabilité pour familles d'hamiltoniens." Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00867687.
Full textHaro, Àlex. "The Primitive Function of an Exact Symplectomorphism. Variational principles, Converse KAM Theory and the problems of determination and interpolation." Doctoral thesis, Universitat de Barcelona, 1998. http://hdl.handle.net/10803/2116.
Full texta) PART I: Exact symplectic geometry (introduction of the problems). This part contains the basic tools of symplectic geometry and outlines the four subjects that we have study along the thesis: the determination problem, the interpolation problem, the variational problem and the breakdown problem.
b) PART II: On the standard symplectic manifold (analytical part). We recall the necessary tools to work on R(d) x R(d). That is we perform a coordinate treatment of the results. First of all we relate different kinds of generating functions to the primitive function and later we solve formally the determination problem. Then we introduce different variational principles: for fixed points, periodic orbits and orbital segments. Their invariance under certain kind of transformations of phase space is proved, and we interpret physically such results. Finally we give the basic properties of invariant exact Lagrangian graphs obtaining at last that if our graph is minimizing then its orbits are minimizing.
c) PART III: On the cotangent bundle (geometrical part). The first three chapters are similar to the three previous ones with the difference that we do an intrinsic treatment of the results by considering any cotangent bundle. The fourth chapter in this part deals with the solution of the interpolation problem given in analytic set up.
d) PART IV: Converse KAM theory (numerical part). The last part deals with the applications to converse Kolmogorv-Arnold-Moser (KAM) theory. First of all we give a small list of different examples that we shall study later. Then we generalize converse KAM theory and we related it to the Lipschitz theory by Birkhoff and Herman. Then we perform our variational Greene method and apply it to different examples. Also we study numerically the Aubry-Mather sets in higher dimensions. After this we apply our methods to the rotational standard map that is a symplectic skew product. Then we give some ideas about the geometrical obstructions for existence of invariant tori showing them with a simple example. We also find some known Birkhoff normal forms using our methods. Finally we explain briefly how our theory can be used for arbitrary Lagrangian foliations.
La present memòria es troba dividida en quatre parts ben diferenciades. La primera conté les eines bàsiques de la geometria simplèctica i planteja els quatre problemes que tractarem al llarg de la memòria: el problema de determinació, el problema d'interpolació, el problema variacional i el problema del trencament de tors invariants.
La segona part tracta sobre la varietat simpléctica estàndard, i vindria a ser la part analítica. Aquí hem treballat a R(d) x R(d), és a dir hem fet un tractament coordenat dels resultats. Primer relacionem les funcions generatrius amb la funció primitiva i després resolem formalment el problema de determinación. Tot seguit tractem diferents principis variacionals per als punts fixos per a les òrbites periòdiques i per als segments orbitals. La seva invariància respecte a certs tipus de transformacions de l'espai de fase és demostrada donant una interpretació física. Finalment donem les propietats bàsiques dels grafs Lagrangians invariants, especialment aquella que diu que les òrbites sobre un graf minimitzant són minimitzants.
La tercera part abraça el tema del fibrat cotangent, la part geométrica de l'obra. Els tres primers capítols segueixen més o menys la línia dels tres precedents amb la diferéncia fonamental que aquí considerem qualsevol fibrat cotangent. Fem llavors un tractament intrínsec. El quart capítol d'aquesta part està dedicat a resoldre el problema d'interpolació en el cas analític.
La quarta i darrera part (que vindria a ser la secció numèrica de la tesi), tracta de les aplicacions a la teoria Kolmogorv, Arnold i Moser (KAM) inversa o del trencament dels tors invariants. Primer donem una llista d'exemples que utilitzarem més endavant. Després generalitzem la teoria KAM inversa i la relacionem amb la teoria Lipschitziana de Birkhoff i Herman. Llavors implementem el nostre criteri de Greene variacional i l'apliquem a diferents exemples. També estudiem els equivalents dels conjunts d'Aubry-Mather en dimensió alta (bé = 4). Després apliquem aquesta metodologia a l'aplicació estàndard rotacional (3D), indicant abans la teoria necessària. Llavors donem algunes idees de com generalitzar els criteris obstruccionals a dimensions altes hi ho mostrem amb un petit exemple. Finalment retrobem algunes formes normals de Birkhoff utilitzant la nostra metodologia basada en la funcióprimitiva i expliquem una mica com es podria considerar la nostra teoria tenint en compte foliacions Lagrangianes arbitràries.
Fontanari, Daniele. "Quantum manifestations of the adiabatic chaos of perturbed susperintegrable Hamiltonian systems." Thesis, Littoral, 2013. http://www.theses.fr/2013DUNK0356/document.
Full textThe abundance, among physical models, of perturbations of superintegrable Hamiltonian systems makes the understanding of their long-term dynamics an important research topic. While from the classical standpoint the situation, at least in many important cases, is well understood through the use of Nekhoroshev stability theorem and of the adiabatic invariants theory, in the quantum framework there is, on the contrary, a lack of precise results. The purpose of this thesis is to study a perturbed superintegrable quantum system, obtained from a classical counterpart by means of geometric quantization, in order to highlight the presence of indicators of superintegrability analogues to the ones that characterize the classical system, such as the coexistence of regular motions with chaotic one, due to the effects of resonances, opposed to the regularity in the non resonant regime. The analysis is carried out by studying the Husimi distributions of chosen quantum states, with particular emphasis on stationary states and evolved coherent states. The computation are performed using both numerical methods and perturbative schemes. Although this should be considered a preliminary work, the purpose of which is to lay the fundations for future investigations, the results obtained here give interesting insights into quantum dynamics. For instance, it is shown how classical resonances exert a considerable influence on the spectrum of the quantum system and how it is possible, in the quantum behaviour, to find a trace of the classical adiabatic invariance in the resonance regime
L'abbondanza, fra i modelli fisici, di perturbazioni di sistemi Hamiltoniani superintegrabili rende la comprensione della loro dinamica per tempi lunghi un importante argomento diricerca. Mentre dal punto di vista classico la situazione, perlomeno in molti case importanti, è ben compresa grazie all'uso del teorema di stabilità di Nekhoroshev e della teoria degli invariantiadiabatici, nel caso quantistico vi è, al contrario, una mancanza di risultati precisi. L'obiettivo di questa tesi è di studiare un sistema superintegrabile quantistico, ottenuto partendo da un corrispettivo classico tramite quantizzazione geometrica, al fine di evidenziare la presenza di indicatori di supertintegrabilità analoghi a quelliche caratterizzano il sistema classico, come la coesistenza di moti regolari e caotici, dovuta all'effetto delle risonanze, in contrapposizione con la regolarità nel regime non risonante. L'analisi è condotta studiando le distribuzioni di Husimi di stati quantistici scelti, con particolare enfasi posta sugli stati stazionari e sugli stati coerenti evoluti. I calcoli sono effettuati sia utilizzando tecniche numeriche che schemi perturbativi. Pur essendo da considerardi questo un lavoro preliminare, il cui compito è di porre le fondamenta per analisi future, i risultati qui ottenuti offrono interessanti spunti sulla dinamica quantistica. Per esempio è mostrato come le risonanze classiche abbiano un chiaro effeto sullo spettro del sistema quantistico, ed inoltre comesia possibile trovare una traccia, nel comportamento quantistico, dell'invarianza adiabatica classica nel regime risonante
Masoero, Marco. "On the long time behavior of potential MFG." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED057.
Full textThe purpose of this thesis is to shed some light on the long time behavior of potential Mean Field Games (MFG), regardless of the convexity of the minimization problem associated. For finite dimensional Hamiltonian systems, problems of the same nature have been addressed through the so-called weak KAM theory. We transpose many results of this theory in the infinite dimensional context of potential MFG. First, we characterize through an ergodic approximation the limit value associated to time dependent MFG systems. We provide explicit examples where this value is strictly greater than the energy level of stationary solutions of the ergodic MFG system. This implies that optimal trajectories of time dependent MFG systems cannot converge to stationary configurations. Then, we prove the convergence of the minimization problem associated to time dependent MFGs to a solution of the critical Hamilton-Jacobi equation in the space of probability measures. In addition, we show a mean field limit for the ergodic constant associated with the corresponding finite dimensional Hamilton-Jacobi equation. In the last part we characterize the limit of the infinite horizon discounted minimization problem that we use for the ergodic approximation in the first part of the manuscript
Castan, Thibaut. "Stability in the plane planetary three-body problem." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066062/document.
Full textArnold showed the existence of quasi-periodic solutions in the plane planetary three-body prob- lem, provided that the mass of two of the bodies, the planets, is small compared to the mass of the third one, the Sun. This smallness condition depends in a sensitive way on the analyticity widths of the Hamiltonian of the three-body problem, expressed with the help of some tran- scendental coordinates. Hénon gave a minimal ratio of masses necessary to the application of Arnold’s theorem. The main objective of this thesis is to determine a sufficient condition on this ratio. A first part of this work consists in estimating these analyticity widths, which requires a precise study of the complex Kepler equation, as well as the complex singularities of the disturb- ing function. A second part consists in reworking the Hamiltonian to put it under normal form, in order to apply the KAM theorem (KAM standing for Kolmogorov-Arnold-Moser). In this aim, it is essential to work with the secular Hamiltonian to put it under a suitable normal form. We can then quantify the non-degeneracy of the secular Hamiltonian, as well as estimate the perturbation. Finally, it is necessary to derive a quantitative version of the KAM theorem, in order to identify the hypotheses necessary for its application to the plane three-body problem. After this work, it is shown that the KAM theorem can be applied for a ratio of masses that is close to 10^(−85) between the planets and the star
Valvo, Lorenzo. "Hamiltonian perturbation theory on a poisson algebra : application to a throbbing top and to magnetically confined particles." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0498.
Full textThe Hamiltonian perturbation theory of classical mechanics is based on the underlying Lie algebraic structure. But Lie structures are met in a wider class of dynamical systems, called Poisson systems. In the first part of this thesis, we propose a purely algebraic approach to classical perturbation theory to extend its scope to any Poisson system. In this method, introduced in [Vittot, 2004], a (Lie) transform allows to split the perturbation into a term reserving the unperturbed flow, and a smaller correction, quadratic in the original perturbation strength.The second part of the dissertation is about the dynamics of a non-autonomous Top. We consider first a symmetric Top with periodically dependent moments of inertia; in this case, our theorem applies and reproduces the KAM theorem of classical mechanics. Then we switch to a non symmetric Top with non-periodically fluctuating moments of inertia: in this case we study for which conditions the static trajectories give a good approximation to those of the non-autonomous system.In the third part of this work we study the dynamics of a magnetically confined particle. By perturbation theory one may reduce the dimensionality of the dynamics, or study the retroaction of the particle on the field. However, providing an efficient description of the unperturbed flow is a formidable task, related to the long-standing issue of Guiding Centre Theory in plasma physics. Recently a novel relativistic and non-perturbative approach to Guiding Centre theory has been proposed [Di Troia, 2018]. We derive the equations of motion and their Poisson structure in this description
Reinol, Alisson de Carvalho [UNESP]. "Integrabilidade e dinâmica global de sistema diferenciais polinomiais definidos em R³ com superfícies algébricas invariantes de graus 1 e 2." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151140.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-07-19T14:22:46Z (GMT) No. of bitstreams: 1 reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5)
Made available in DSpace on 2017-07-19T14:22:46Z (GMT). No. of bitstreams: 1 reinol_ac_dr_sjrp.pdf: 6086108 bytes, checksum: 610534618b19a1d27cfff678d44f1a4a (MD5) Previous issue date: 2017-07-05
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Neste trabalho, consideramos aspectos algébricos e dinâmicos de alguns problemas envolvendo superfícies algébricas invariantes em sistemas diferenciais polinomiais definidos em R³. Determinamos o número máximo de planos invariantes que um sistema diferencial quadrático pode ter e estudamos a realização e integrabilidade de tais sistemas. Fornecemos a forma normal para sistemas diferenciais com quádricas invariantes e estudamos de forma mais detalhada a dinâmica e integrabilidade de sistemas diferenciais quadráticos com um paraboloide elíptico como superfície algébrica invariante. Por fim, estudamos as consequências dinâmicas ao se perturbar um sistema diferencial, cujo espaço de fase é folheado por superfícies algébricas invariantes. Para tal, consideramos o sistema diferencial quadrático conhecido como sistema Sprott A, que depende de um parâmetro real a e apresenta comportamento caótico mesmo sem ter pontos de equilíbrio, tendo, assim, um hidden attractor para valores adequados do parâmetro a. Provamos que, para a=0, o espaço de fase desse sistema é folheado por esferas concêntricas invariantes. Utilizando a Teoria do Averaging e o Teorema KAM (Kolmogorov-Arnold-Moser), provamos que, para a>0 suficientemente pequeno, uma órbita periódica orbitalmente estável emerge de um equilíbrio do tipo zero-Hopf não isolado localizado na origem e que formam-se toros invariantes em torno desta órbita periódica. Concluímos que a ocorrência de tais fatos tem um papel importante na formação do hidden attractor.
In this work, we consider algebraic and dynamical aspects of some problems involving invariant algebraic surfaces in polynomial differential systems defined in R³. We determine the maximum number of invariant planes that a quadratic differential system can have and we study the realization and integrability of such systems. We provide the normal form for differential systems having an invariant quadric and we study in more detail the dynamics and integrability of quadratic differential systems having an elliptic paraboloid as invariant algebraic surface. Finally, we study the dynamic consequences of perturbing differential system whose phase space is foliated by invariant algebraic surfaces. For this we consider the quadratic differential system known as Sprott A system, which depends on one real parameter a and presents chaotic behavior even without having any equilibrium point, thus having a hidden attractor for suitable values of parameter a. We prove that, for a=0, the phase space of this system is foliated by invariant concentric spheres. By using the Averaging Theory and the KAM (Kolmogorov-Arnold-Moser) Theorem, we prove that, for a>0 sufficiently small, an orbitally stable periodic orbit emerges from a zero-Hopf nonisolated equilibrium point located at the origin and that invariant tori are formed around this periodic orbit. We conclude that the occurrence of these facts has an important role in the formation of the hidden attractor.
FAPESP: 2013/26602-7
Books on the topic "KAM and Nekhoroshev theory"
Giancarlo, Benettin, Henrard J, Kuksin Sergej B. 1955-, Giorgilli Antonio, Centro internazionale matematico estivo, and European Mathematical Society, eds. Hamiltonian dynamics theory and applications: Lectures given at the C.I.M.E.-E.M.S. Summer School, held in Cetraro, Italy, July 1-10, 1999. Berlin: Springer, 2005.
Find full textLazutkin, Vladimir F. KAM theory andsemiclassical approximations to eigenfunctions. Berlin: Springer-Verlag, 1993.
Find full textLuo, Albert C. J., and Valentin Afraimovich, eds. Hamiltonian Chaos Beyond the KAM Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12718-2.
Full textLazutkin, V. F. KAM theory and semiclassical approximations to eigenfunctions. Berlin: Springer-Verlag, 1993.
Find full textLazutkin, Vladimir F. KAM Theory and Semiclassical Approximations to Eigenfunctions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.
Find full textLazutkin, Vladimir F. KAM Theory and Semiclassical Approximations to Eigenfunctions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76247-5.
Full textGonzález-Enríquez, A. Singularity theory for non-twist KAM tori. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textValentin, Afraimovich, and SpringerLink (Online service), eds. Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935–2008). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textBook chapters on the topic "KAM and Nekhoroshev theory"
Niederman, Laurent. "Nekhoroshev Theory." In Mathematics of Complexity and Dynamical Systems, 1070–81. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_62.
Full textNiederman, Laurent. "Nekhoroshev Theory." In Encyclopedia of Complexity and Systems Science, 5986–98. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_352.
Full textNiederman, Laurent. "Nekhoroshev Theory." In Perturbation Theory, 291–305. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-1-0716-2621-4_352.
Full textDelshams, Amadeu, and Pere Gutiérrez. "Nekhoroshev and KAM Theorems Revisited via a Unified Approach." In Hamiltonian Mechanics, 299–306. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0964-0_29.
Full textBroer, Henk, and Floris Takens. "On KAM theory." In Dynamical Systems and Chaos, 173–204. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6870-8_5.
Full textLazutkin, Vladimir F. "KAM Theorems." In KAM Theory and Semiclassical Approximations to Eigenfunctions, 121–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76247-5_4.
Full textGuzzo, Massimiliano, Zoran Knežević, and Andrea Milani. "Probing the Nekhoroshev Stability of Asteroids." In Modern Celestial Mechanics: From Theory to Applications, 121–40. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2304-6_8.
Full textMeyer, Kenneth R., and Glen R. Hall. "Stability and KAM Theory." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 227–40. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4073-8_9.
Full textMeyer, Kenneth R., and Daniel C. Offin. "Stability and KAM Theory." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 305–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53691-0_12.
Full textMeyer, Kenneth, Glen Hall, and Dan Offin. "Stability and KAM Theory." In Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 329–54. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-09724-4_13.
Full textConference papers on the topic "KAM and Nekhoroshev theory"
Manarvi, Abdul, and Troy Henderson. "Tracking GPS orbits using KAM theory." In 2017 IEEE Aerospace Conference. IEEE, 2017. http://dx.doi.org/10.1109/aero.2017.7943567.
Full textCARDIN, F. "FLUID DYNAMICAL FEATURES OF THE WEAK KAM THEORY." In Proceedings of the 14th Conference on WASCOM 2007. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812772350_0018.
Full textKALOSHIN, VADIM YU. "MATHER THEORY, WEAK KAM THEORY, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE'S." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0004.
Full textYUAN, XIAOPING. "RECENT PROGRESS ON NONLINEAR WAVE EQUATIONS VIA KAM THEORY." In Control Theory and Related Topics - In Memory of Professor Xunjing Li. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812790552_0027.
Full textGonzález-Enríquez, A., and R. de la Llave. "Analytic approximations of geometric maps and applications to KAM theory." In Proceedings of the International Conference on SPT 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812776174_0037.
Full textYang, Yang, and Yanning Zheng. "A Review of Information Acquisition Based on Information Foraging Theory." In 2009 Second International Symposium on Knowledge Acquisition and Modeling. IEEE, 2009. http://dx.doi.org/10.1109/kam.2009.42.
Full textZhong, Qi, Zheng Li, and Le Zhang. "Analysis of the Emergency Procurement Based on Evolutionary Game Theory." In 2009 Second International Symposium on Knowledge Acquisition and Modeling (KAM 2009). IEEE, 2009. http://dx.doi.org/10.1109/kam.2009.67.
Full textChen, Jingpu. "Evolutionary Research on Financial Core Competence Based on Complex Systematic Theory." In 2009 Second International Symposium on Knowledge Acquisition and Modeling. IEEE, 2009. http://dx.doi.org/10.1109/kam.2009.133.
Full textDuan, Weihua, Xinhua Bi, and Yawei Wang. "The Trend Analysis of HRM Outsourcing Relationship Based on Game Theory." In 2009 Second International Symposium on Knowledge Acquisition and Modeling. IEEE, 2009. http://dx.doi.org/10.1109/kam.2009.301.
Full textLi Li, Qiu Meng, and Wu Bei. "Based on queuing theory to solve the optimization number of berth." In 2010 3rd International Symposium on Knowledge Acquisition and Modeling (KAM). IEEE, 2010. http://dx.doi.org/10.1109/kam.2010.5646271.
Full text