Academic literature on the topic 'Kantorovich'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kantorovich.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kantorovich"
BOLDYREV, IVAN, and TILL DÜPPE. "Programming the USSR: Leonid V. Kantorovich in context." British Journal for the History of Science 53, no. 2 (April 8, 2020): 255–78. http://dx.doi.org/10.1017/s0007087420000059.
Full textSawano, Yoshihiro, Xinxin Tian, and Jingshi Xu. "Uniform boundedness of Szász-Mirakjan-Kantorovich operators in Morrey spaces with variable exponents." Filomat 34, no. 7 (2020): 2109–21. http://dx.doi.org/10.2298/fil2007109s.
Full textPták, Vlastimil. "The Kantorovich Inequality." American Mathematical Monthly 102, no. 9 (November 1995): 820–21. http://dx.doi.org/10.1080/00029890.1995.12004669.
Full textPtak, Vlastimil. "The Kantorovich Inequality." American Mathematical Monthly 102, no. 9 (November 1995): 820. http://dx.doi.org/10.2307/2974512.
Full textKusraev, A. G. "Banach-Kantorovich spaces." Siberian Mathematical Journal 26, no. 2 (1985): 254–59. http://dx.doi.org/10.1007/bf00968770.
Full textDitzian, Zeev, and Xinlong Zhou. "Kantorovich-Bernstein polynomials." Constructive Approximation 6, no. 4 (December 1990): 421–35. http://dx.doi.org/10.1007/bf01888273.
Full textIgbida, Noureddine, José M. Mazón, Julio D. Rossi, and Julián Toledo. "Optimal mass transportation for costs given by Finsler distances via p-Laplacian approximations." Advances in Calculus of Variations 11, no. 1 (January 1, 2018): 1–28. http://dx.doi.org/10.1515/acv-2015-0052.
Full textZheng, Shiming, and Desmond Robbie. "A note on the convergence of Halley's method for solving operator equations." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 37, no. 1 (July 1995): 16–25. http://dx.doi.org/10.1017/s0334270000007542.
Full textMoradi, Hamid, Shigeru Furuichi, and Zahra Heydarbeygi. "New Refinement of the Operator Kantorovich Inequality." Mathematics 7, no. 2 (February 1, 2019): 139. http://dx.doi.org/10.3390/math7020139.
Full textCHEN, DONG. "ON THE CONVERGENCE OF THE HALLEY METHOD FOR NONLINEAR EQUATION OF ONE VARIABLE." Tamkang Journal of Mathematics 24, no. 4 (December 1, 1993): 461–67. http://dx.doi.org/10.5556/j.tkjm.24.1993.4517.
Full textDissertations / Theses on the topic "Kantorovich"
Maroofi, Hamed. "Applications of the Monge - Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29197.
Full textÖstman, Martin. "Video Coding Based on the Kantorovich Distance." Thesis, Linköping University, Department of Electrical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2330.
Full textIn this Master Thesis, a model of a video coding system that uses the transportation plan taken from the calculation of the Kantorovich distance is developed. The coder uses the transportation plan instead of the differential image and sends it through blocks of transformation, quantization and coding.
The Kantorovich distance is a rather unknown distance metric that is used in optimization theory but is also applicable on images. It can be defined as the cheapest way to transport the mass of one image into another and the cost is determined by the distance function chosen to measure distance between pixels. The transportation plan is a set of finitely many five-dimensional vectors that show exactly how the mass should be moved from the transmitting pixel to the receiving pixel in order to achieve the Kantorovich distance between the images. A vector in the transportation plan is called an arc.
The original transportation plan was transformed into a new set of four-dimensional vectors called the modified difference plan. This set replaces the transmitting pixel and the receiving pixel with the distance from the transmitting pixel of the last arc and the relative distance between the receiving pixel and the transmitting pixel. The arcs where the receiving pixels are the same as the transmitting pixels are redundant and were removed. The coder completed an eleven frame sequence of size 128x128 pixels in eight to ten hours.
Aguiar, Guilherme Ost de. "O Problema de Monge-Kantorovich para o custo quadrático." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/32384.
Full textWe analyze the Monge-Kantorovich optimal transportation problem in the case where the cost function is given by the square of the Euclidean norm. Such cost has a structure which allow us to get more interesting results than the general case. Our main purpose is to determine if there are solutions to such problem and characterize them. We also give an informal treatment to the optimal transportation problem in the general case.
Russo, Daniele. "Introduzione alla Teoria del Trasporto Ottimale e Dualità di Kantorovich." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21788/.
Full textZimmer, Raphael [Verfasser]. "Couplings and Kantorovich contractions with explicit rates for diffusions / Raphael Zimmer." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1140525913/34.
Full textAlpargu, Gülhan. "The Kantorovich inequality, with some extensions and with some statistical applications." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23985.
Full textOliveira, Aline Duarte de. "O teorema da dualidade de Kantorovich para o transporte de ótimo." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/32470.
Full textWe analyze the optimal transport theory proving the Kantorovich duality theorem for a wide class of cost functions. Such result plays an extremely important role in the optimal transport theory. An important tool used here is the Fenchel-Rockafellar duality theorem, which we state and prove in a general case. We also prove the Kantorovich-Rubinstein duality theorem, which deals with the particular case of cost function given by the distance.
Engvall, Sebastian. "Kaijsers algoritm för beräkning av Kantorovichavstånd parallelliserad i CUDA." Thesis, Linköpings universitet, Informationskodning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102867.
Full textAgueh, Martial Marie-Paul. "Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29180.
Full textZhao, Junqing. "The computer oriented Kantorovich-finite difference method and its application on bridge engineering." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21980.pdf.
Full textBooks on the topic "Kantorovich"
Semenovich, Kutateladze Samson, and Romanovskiĭ Iosif Vladimirovich, eds. L.V. Kantorovich selected works. Amsterdam, The Netherlands: Gordon and Breach Publishers, 1996.
Find full textLeonid Vitalʹevich Kantorovich, (1912-1986): Bibliograficheskiĭ ukazatelʹ. 2nd ed. Novosibirsk: Izdatelʹstvo Instituta matematiki, 2012.
Find full textGacki, Henryk. Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups. Warszawa: Institute of Mathematics, Polish Academy of Sciences, 2007.
Find full textKutateladze, S. S. Leonid Vitalʹevič Kantorovič (1912-1986): Bibliografičeskij ukazatelʹ. Novosibirsk: Izd-vo instituta matematiki im. S.L. Soboleva SO RAN, 2002.
Find full textEzquerro Fernández, José Antonio, and Miguel Ángel Hernández Verón. Newton’s Method: an Updated Approach of Kantorovich’s Theory. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55976-6.
Full textSibirskai͡a konferent͡sii͡a po prikladnoĭ i industrialʹnoĭ matematike (1994 Akademgorodok, Novosibirsk, Russia). Sibirskai͡a konferent͡sii͡a po prikladnoĭ i industrialʹnoĭ matematike: Posvi͡ashchennai͡a pami͡ati laureata Nobelevskoĭ premii L.V. Kantorovicha. Novosibirsk: Sibirskoe otd-nie Rossiĭskoĭ akademii nauk, In-t matematiki im. S.L. Soboleva SO RAN, 1997.
Find full textS, Dvort͡s︡ina N., Makhrova I. A, Makarov V. L, Kutateladze Samson Semenovich, and Rubinshteĭn Gennadiĭ Shlemovich, eds. Leonid Vitalʹevich Kantorovich, 1912-1986. Moskva: "Nauka", 1989.
Find full textL, Kantorovich V., Kutateladze S. S, and Fet I︠A︡ I. 1924-, eds. Leonid Vitalʹevich Kantorovich: Chelovek i uchenyĭ. Novosibirsk: Izd-vo SO RAN, Filial "Geo", 2002.
Find full textKantorovich, Vsevolod L. L V Kantorovich: Selected Works (Classics of Soviet Mathematics). CRC, 2001.
Find full text1906-1999, Leontief Wassily, Kantorovich L. V. 1912-1986, Koopmans Tjalling C. 1910-1985, Stone Richard 1913-1991, Vane Howard R, and Mulhearn Chris, eds. Wassily W. Leontief, Leonid V. Kantorovich, Tjalling C. Koopmans and J. Richard N. Stone. Cheltenham, Glos, UK: Edward Elgar, 2009.
Find full textBook chapters on the topic "Kantorovich"
Villani, Cédric. "The Kantorovich duality." In Graduate Studies in Mathematics, 17–46. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/gsm/058/02.
Full textGass, Saul I., and Jonathan Rosenhead. "Leonid Vital’evich Kantorovich." In Profiles in Operations Research, 157–70. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-6281-2_10.
Full textMakarov, V. "Leonid Vitalievich Kantorovich." In Problems of the Planned Economy, 119–20. London: Palgrave Macmillan UK, 1990. http://dx.doi.org/10.1007/978-1-349-20863-0_18.
Full textBrenier, Yann. "Extended Monge-Kantorovich Theory." In Optimal Transportation and Applications, 91–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44857-0_4.
Full textEzquerro Fernández, José Antonio, and Miguel Ángel Hernández Verón. "The Newton-Kantorovich Theorem." In Frontiers in Mathematics, 1–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48702-7_1.
Full textVillani, Cédric. "Cyclical monotonicity and Kantorovich duality." In Grundlehren der mathematischen Wissenschaften, 51–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_5.
Full textMakarov, V. "Kantorovich, Leonid Vitalievich (1912–1986)." In The New Palgrave Dictionary of Economics, 7226–28. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_738.
Full textKusraev, A. G., and S. S. Kutateladze. "Nonstandard Methods and Kantorovich Spaces." In Nonstandard Analysis and Vector Lattices, 1–79. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4305-9_1.
Full textGupta, Vijay, Themistocles M. Rassias, and Deepika Agrawal. "Approximation by Lupaṣ–Kantorovich Operators." In Springer Optimization and Its Applications, 217–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74325-7_9.
Full textEzquerro Fernández, José Antonio, and Miguel Ángel Hernández Verón. "The classic theory of Kantorovich." In Newton’s Method: an Updated Approach of Kantorovich’s Theory, 1–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55976-6_1.
Full textConference papers on the topic "Kantorovich"
Sulman, Mohamed, J. F. Williams, Robert D. Russell, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Monge-Kantorovich Approach for Grid Generation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241442.
Full textLipeng Ning, Tryphon T. Georgiou, and Allen Tannenbaum. "Matrix-valued Monge-Kantorovich optimal mass transport." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760486.
Full textConnolly, T. J., D. J. Wall, and R. H. Bates. "Inverse Problems And The Newton-Kantorovich Method." In 29th Annual Technical Symposium, edited by Richard H. Bates and Anthony J. Devaney. SPIE, 1985. http://dx.doi.org/10.1117/12.949569.
Full textOrlova, Olga, and Gert Tamberg. "On approximation properties of generalized Kantorovich-type sampling operators." In 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148849.
Full textMoeenfard, H., M. H. Kahrobaiyan, and M. T. Ahmadian. "Application of the Extended Kantorovich Method to the Static Deflection of Microplates Under Capillary Force." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39517.
Full textAhmadian, Mohammad Taghi, Hamid Moeenfard, and Tohid Pirbodaghi. "Application of the Extended Kantorovich Method to the Static Deflection of Electrically Actuated Microplates." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66062.
Full textBehzad, Mahdi, Hamid Moeenfard, and Mohammad Taghi Ahmadian. "Application of the Extended Kantorovich Method to the Vibrational Analysis of Electrically Actuated Microplates." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12186.
Full textLin, Rongfei, and Yueqing Zhao. "The Newton-Kantorovich Convergence Theoremf or a Deformed Newton Method." In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.488.
Full textKargarnovin, M. H., and A. Joodaky. "Bending Analysis of Thin Skew Plates Using Extended Kantorovich Method." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24138.
Full textHameed, Hameed Husam, Z. K. Eshkuvatov, Z. Muminov, and Adem Kilicman. "Solving system of nonlinear integral equations by Newton-Kantorovich method." In PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4887642.
Full textReports on the topic "Kantorovich"
Henry, Marc, Alfred Galichon, Victor Chernozhukov, and Marc Hallin. Monge-Kantorovich depth, quantiles, ranks and signs. IFS, January 2015. http://dx.doi.org/10.1920/wp.cem.2015.0415.
Full textGalichon, Alfred, Marc Hallin, Victor Chernozhukov, and Marc Henry. Monge-Kantorovich depth, quantiles, ranks and signs. Institute for Fiscal Studies, September 2015. http://dx.doi.org/10.1920/wp.cem.2015.5715.
Full textYamamoto, Tetsuro. Error Bounds for Newton-Like Methods Under Kantorovich Type Assumptions. Fort Belvoir, VA: Defense Technical Information Center, July 1985. http://dx.doi.org/10.21236/ada160994.
Full text