Academic literature on the topic 'Kao shi yuan'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kao shi yuan.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kao shi yuan"

1

유바다. "The Dispatch of Yuan Shi-kai in Negotiation Trader to Joseon and His Status Issues in 1885." SA-CHONG(sa) ll, no. 92 (September 2017): 49–82. http://dx.doi.org/10.16957/sa..92.201709.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sehyun Cho. "Policies for Manchus & Han Ethnic Relations and the Bureaucracy Reformation in the End of the Late Qing Dynasty - Focusing on Duan Fang and Yuan Shi-kai -." Journal of North-east Asian Cultures 1, no. 23 (June 2010): 27–51. http://dx.doi.org/10.17949/jneac.1.23.201006.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghimire, Govinda, Archana Loganathan, Osama Awadallah, and Bilal El-Zahab. "Sulfurized Electrolyte Additives for Stable Lithium Metal Anodes." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 187. http://dx.doi.org/10.1149/ma2022-023187mtgabs.

Full text
Abstract:
Researchers around the world are striving to develop new materials for energy-efficient and high energy density lithium-ion batteries [1]. Lithium metal with a theoretical specific capacity of 3860 mAh/g, low density (0.534 g/cm3), and the lowest potential (−3.040 V vs. standard hydrogen electrode) is consider the ultimate anode material for high specific energy batteries [2]. However, various issues remain to be address that hinder its use in commercial batteries, namely, cycling stability, Coulombic efficiency, and safety aspects associated with dendritic growth [3]. Inactive lithium, also known as “dead lithium,” originating from the dendrites that become separated from the surface over prolonged cycling contribute to anode capacity loss and require high negative to positive electrode capacity ratio (N/P). In addition, due to the extremely low standard redox potential of lithium, electrolytes readily react with the lithium metal surface even without any potential polarization. These reactions lead to the formation of mostly insoluble species in a layer often referred to as solid electrolyte interface, SEI. Ideally, the SEI layer is self-terminating; however, as fresh lithium gets exposed via dendritic growth, SEI formation continues. The steady and uncontrollable growth of SEI throughout the functional life of the battery leads to gradual resistant growth responsible for the capacity fade and eventual “death” of the battery. In previous art, alternative electrolytes, electrolyte additives, and artificial SEIs were studied [4] [5]. For example, the electrolyte additive lithium fluoride (LiF) was used in carbonate electrolytes and provided a strong protective layer that reduced side reactions and improved the life capacity of the battery [6]. Recently, 3-dimensional design of the anode’s current collector was shown to accommodate Li deposition resulting in suppressed SEI growth and volume expansion during cycling [7]. In the present work, we use sulfur-containing compounds as additives at a very low concentration (1 – 50 mM) in standard 1M LiPF6 EC:DMC (v:v = 1:1). Coin cells (2032) were assembled using lithium foil (100 mm thick), separator (Celgard), and NMC811 cathode (> 10 mg/cm2). Cells were first rested and activated at a slow rate then cycled at C/3 and 1C for charge and discharge respectively in prescribed voltage cutoff window. As shown in Figure 1, the sulfur-containing cell had more than 300 cycles before 90% capacity retention relative to the beginning of life (BOL) capacity. The sulfur-free control cell lasted less than 150 cycles above the 90% retention line. Electrochemical impedance spectroscopy (EIS) measurements for cycled cells showed lower interfacial resistance for cells with sulfur-containing additives compared to control cells. The reason for the improved cycle stability can be attributed to the stability afforded by the additives to the SEI layer. Figure 1: A comparison of cell performance between control (black) and sulfur-containing additive (green). The Red line indicates the 90% retention of the battery. References Yoshio, Masaki, Ralph J. Brodd, and Akiya Kozawa. Lithium-ion batteries. Vol. 1. New York: Springer, 2009. Liu, Bin, Ji-Guang Zhang, and Wu Xu. "Advancing lithium metal batteries." Joule2, no. 5 (2018): 833-845. Xiao, Jie, Qiuyan Li, Yujing Bi, Mei Cai, Bruce Dunn, Tobias Glossmann, Jun Liu et al. "Understanding and applying coulombic efficiency in lithium metal batteries." Nature Energy5, no. 8 (2020): 561-568. Tikekar, Mukul D., Snehashis Choudhury, Zhengyuan Tu, and Lynden A. Archer. "Design principles for electrolytes and interfaces for stable lithium-metal batteries." Nature Energy1, no. 9 (2016): 1-7. Wang, Qian, Chengkai Yang, Jijin Yang, Kai Wu, Cejun Hu, Jing Lu, Wen Liu, Xiaoming Sun, Jingyi Qiu, and Henghui Zhou. "Dendrite‐free lithium deposition via a superfilling mechanism for high‐performance Li‐metal batteries." Advanced Materials31, no. 41 (2019): 1903248. Choudhury, Snehashis. "Lithium fluoride additives for stable cycling of lithium batteries at high current densities." In Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries, pp. 81-94. Springer, Cham, 2019. Yun, Qinbai, Yan‐Bing He, Wei Lv, Yan Zhao, Baohua Li, Feiyu Kang, and Quan‐Hong Yang. "Chemical dealloying derived 3D porous current collector for Li metal anodes." Advanced Materials28, no. 32 (2016): 6932-6939. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
4

Nisha, Ananthan, Pandaram Maheswari, Santhanakumar Subanya, Ponnusamy Munusamy Anbarasan, Karuppaiya Balasundaram Rajesh, and Zbigniew Jaroszewicz. "Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor." Photonics Letters of Poland 13, no. 3 (September 30, 2021): 58. http://dx.doi.org/10.4302/plp.v13i3.1114.

Full text
Abstract:
We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, "Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, "A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, "Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, "Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, "Optical Properties and Fermi Surface of Nickel", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, "Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, "Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, "Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, "Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, "On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
5

Tak, Hyun Jong, and Kwang Sup Eom. "The Adoption of Lithiophilic Nano Sn on Cu Current Collector By Electroplating Techniques to Improve the Stability of Lithium Metal Anode." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 404. http://dx.doi.org/10.1149/ma2022-024404mtgabs.

Full text
Abstract:
The growing demand for higher energy density batteries is increasing due to needs of electric vehicle (EV) [1]. Until now, it cannot exceed the one-time charging distance of an internal combustion engine vehicle, due to energy limit of batteries. Li metal anode (LMA) is one of the attractive anode candidates because of the lowest electrochemical redox electrode potential (-3.04 V vs. SHE) and the extremely high theoretical gravimetric capacity (3,860 mAh g-1) compared to graphite anode (372 mAh g-1) [2]. However, uneven Li deposition causes dendritic growth leading to low Coulombic efficiency (CE) and safety hazards which is impeding the practical use of LMAs [3]. Recently, to suppress such dendritic growth, various solutions such as introduction of solid-state electrolyte (SSE) [4], artificial solid electrolyte interphase (ASEI) [5], 3D current collector (CC) [6], and lithiophilic materials [7] have been proposed. Among the several approaches, introducing lithiophilic material on a CC is one of the facile and effective strategies to increase the lithiophilicity, and hence to induce the planar growth of Li. Also, assuming that electroplating is largely divided into two steps: nucleation and growth, lithiophilic material can change the intrinsic nucleation behavior by preferentially forming a different phases such as Li alloys [8]. Since the Li nucleation process significantly influences the final growth of Li, different cycling behaviors of LMAs would be expected depending on lithiophilic material [9]. As for the methods to adopt the lithiophilic materials, the electrodeposition is very attractive, since it can easily control the surface morphology, which might affect the Li deposition morphology and the related behavior. In this regard, we chose the tin (Sn) as a lithiophilic material, which can be deposited on Cu CC by electroplating, and moreover have a fast Li ion diffusion coefficient [10]. Specifically, in this work, we study the effect of surface morphology of lithiophilic Sn deposited on copper CC by testing Li deposition/stripping behavior for a LMAs. For different morphology, a direct current electrodeposition (DC) and pulsed electrodeposition (PED) were used. Fig.1 is FE-SEM images of Cu@Sn with DC growth and PED growth. Fig.1 (a) shows Sn particles are growing without filling the pores. However, Fig.1 (c) shows Sn particles are growing with filling the pores. At Fig.1 (b) and (d), the morphology difference is conspicuous between DC and PED growth. Fig.1 (b) presents island growth in which nuclei grow on existing nuclei because there is only Ton without relaxation time. While, Fig.1 (d) shows that after rearrangement of deposited atom at Toff, new nucleation sites are created by continuously applying pulses, thereby obtaining the coalescence growth. At Fig.2, Cu@Sn (PED) shows the longer cycle life than bare Cu and Cu@Sn (DC) because Cu@Sn (PED) has an uniformly distributed nano Sn morphology, which provides more sites for Li nucleation to prevent dendritic growth. References [1] PARAJULY, Keshav; TERNALD, Daniel; KUEHR, Ruediger. The Future of Electric Vehicles and Material Resources: A Foresight Brief. 2020. [2] XU, Wu, et al. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014, 7.2: 513-537. [3] CHENG, Xin-Bing, et al. Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews, 2017, 117.15: 10403-10473. [4] YU, Seungho, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 2016, 28.1: 197-206. [5] LI, Nian‐Wu, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced materials, 2016, 28.9: 1853-1858. [6] YUN, Qinbai, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 2016, 28.32: 6932-6939. [7] YAN, Kai, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016, 1.3: 1-8. [8] PEI, Allen, et al. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters, 2017, 17.2: 1132-1139. [9] CHEN, Xiao-Ru, et al. Role of Lithiophilic Metal Sites in Lithium Metal Anodes. Energy & Fuels, 2021, 35.15: 12746-12752. [10] SHI, Jianjian; WANG, Zhiguo; FU, Yong Qing. Density functional theory study of diffusion of lithium in Li–Sn alloys. Journal of materials science, 2016, 51.6: 3271-3276. [11] IBL, N.; SCHADEGG, K. Surface roughness effects in the electrodeposition of copper in the limiting current range. Journal of the Electrochemical Society, 1967, 114.1: 54. Figure 1
APA, Harvard, Vancouver, ISO, and other styles
6

Agredo Orozco, Andres Felipe, Diego Andres Acosta Maya, Carlos Arturo Rodriguez Arroyave, and Luis Fernando Sierra Zuluaga. "Wax and bentonite blends for prototyping industrial clay development: preliminary results." Universidad Ciencia y Tecnología 25, no. 111 (December 10, 2021): 134–44. http://dx.doi.org/10.47460/uct.v25i111.524.

Full text
Abstract:
The automotive design process and the materials in the automotive industry in recent years has caused great interest to the industrial and academic sector. In this study was to evaluate the effect of the amount of bentonite on the thermal and rheological properties of the compound bentonite / paraffin wax. Two bentonite ratios were used: paraffin wax (40:60 and 30:70). The paraffin was characterized by Fourier transform infrared spectroscopy (FTIR), the bentonite was characterized by means of x-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray fluorescence (XRF). The bentonite/paraffine wax composite was characterized by differential-scanning calorimetry (DSC) and rheology. The sample that contains a higher amount of bentonite shows a lower latent heat, and this could cause a greater heat transfer. Finally, the sample that has a lower amount of bentonite evidenced a lower viscosity, and it could be related to a lower interaction between the particles. The sample S1 due to its lower latent heat compared to S2 could represent an interesting alternative to develop prototypingclays. since these materials are characterized by their low working temperatures and easy malleability. Keywords: automotive, prototyping, latent heat, bentonite, paraffin. References [1]X. Ferràs-Hernández, E. Tarrats-Pons, and N. Arimany-Serrat, “Disruption in the automotive industry: A Cambrian moment,” Bus. Horiz., vol. 60, no. 6, pp.855–863, 2017, doi: 10.1016/j.bushor.2017.07.011. [2]O. Heneric, G. Licht, S. Lutz, and W. Urban, “The Europerean Automotive Industry in a Global Context,” Eur. Automot. Ind. Move, pp. 5–44, 2005, doi: 10.1007/3-7908-1644-2_2. [3]S. I.-N. Delhi, “Automotive Revolution & Perspective Towards 2030,” Auto Tech Rev., vol. 5, no. 4, pp. 20–25, Apr. 2016, doi: 10.1365/s40112-016-1117-8.[4]M. Tovey, J. Owen, and P. Street, “in Automotive Design,” vol. 21, pp. 569–588, 2000. [5]Yasusato Yamada, Clay modeling : techniques for giving three-dimensional form to idea. 1997. [6]H. Murray, “Industrial clays case study,” Mining, Miner. Sustain. Dev., vol. 1, no. 64, pp. 1–9, 2002, [Online]. Available: http://www.whitemudresources.com/public/Hayn Murray Clays Case Study.pdf%0Ahttp://whitemudresources.com/public/Hayn Murray ClaysCase Study.pdf. [7]Transparency Market Research, “Industrial Clay Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2016 - 2024,” New york, 2016.[8]J. Murphy, Additives for Plastics Handbook. Elsevier, 2001. [9]Y. Hong, J. J. Cooper-White, M. E. Mackay, C. J. Hawker, E. Malmström, and N. Rehnberg, “A novel processing aid for polymer extrusion: Rheology and processing of polyethylene and hyperbranched polymer blends,” J. Rheol. (N. Y. N. Y)., vol. 43, no. 3, pp. 781–793, 1999, doi: 10.1122/1.550999. [10]D. P. Rawski, P. Edwards, and U. States, “Pulp and Paper : Non fi brous Components,” no. January, pp.1–4, 2017, doi: 10.1016/B978-0-12-803581-8.10289-9. [11]J. Speight, “Instability and incompatibility of tight oil and shale oil,” Shale Oil Gas Prod. Process., pp. 915–942, 2020, doi: 10.1016/b978-0-12-813315-6.00017-8. [12]T. P. Brown, L. Rushton, M. A. Mugglestone, and D. F. Meechan, “Health effects of a sulphur dioxide air pollution episode,” vol. 25, no. 4, pp. 369–371, 2003,doi: 10.1093/pubmed/fdg083. [13]R. Chihi, I. Blidi, M. Trabelsi-Ayadi, and F. Ayari, “Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay,” Comptes Rendus Chim., vol. 22, no. 2–3, pp. 188–197, 2019, doi: 10.1016/j.crci.2018.12.002. [14]Z. Yi, W. Xiaopeng, and L. I. Dongxu, “Prepartion of organophilic bentonite / paraffin composite phase change energy storage material with melting intercalation method,” pp. 126–131, 2011, doi: 10.4028/www.scientific.net/AMR.284-286.126. [15]I. Krupa and A. S. Luyt, “Thermal and mechanical properties of extruded LLDPE / wax blends,” vol. 73, pp. 157–161, 2001. [16]A. Saleem, L. Frormann, J. Koltermann, and C. Reichelt, “Fabrication and Processing of Polypropylene - Paraffin Compounds with Enhanced Thermal andProcessing Properties : Impact Penetration and Thermal Characterization,” vol. 40164, pp. 1–9, 2014, doi:10.1002/app.40164. [17]M. Mu, P. A. M. Basheer, W. Sha, Y. Bai, and T. Mcnally, “Shape stabilised phase change materials based on a high melt viscosity HDPE and paraffin waxes,”Appl. Energy, vol. 162, pp. 68–82, 2016, doi: 10.1016/j.apenergy.2015.10.030. [18]M. Tovey, “Intuitive and objective processes in automotive design,” Des. Stud., vol. 13, no. 1, pp. 23–41, 1992, doi: 10.1016/0142-694X(92)80003-H. [19]J. Verlinden, A. Kooijman, E. Edelenbos, and C. Go, “Investigation on the use of illuminated clay in automotive styling,” 6th Int. Conf. Comput. Ind. Des.Concept. Des. (CAID&CD), Delft, NETHERLANDS, pp. 514–519, 2005. [20]N. W. Muhamad Bustaman and M. S. Abu Mansor, “A Study on CAD/CAM Application in CNC Milling Using Industrial Clay,” Appl. Mech. Mater., vol. 761, pp. 32–36, 2015, doi: 10.4028/www.scientific.net/AMM.761.32. [21]K. Shimokawa, Japan and the global automotive industry. 2010. [22]A. Bucio, R. Moreno tovar, L. Bucio, J. Espinosadávila, and F. Anguebes franceschi, “Characterization of beeswax, candelilla wax and paraffin wax for coatingcheeses,” Coatings, vol. 11, no. 3, pp. 1–18, 2021, doi: 10.3390/coatings11030261. [23]F. Valentini, A. Dorigato, A. Pegoretti, M. Tomasi, G. D. Sorarù, and M. Biesuz, “Si3N4 nanofelts/paraffin composites as novel thermal energy storage architecture,” J. Mater. Sci., vol. 56, no. 2, pp. 1537–1550, 2021, doi: 10.1007/s10853-020-05247-5. [24]F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors,” J. Mater. Chem. C, vol. 3, pp. 10715–10722, 2015, doi: 10.1039/b000000x. [25]R. S. Hebbar, A. M. Isloor, B. Prabhu, Inamuddin, A. M. Asiri, and A. F. Ismail, “Removal of metal ions and humic acids through polyetherimide membranewith grafted bentonite clay,” Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-22837-1. [26]S. Betancourt-Parra, M. A. Domínguez-Ortiz, and M. Martínez-Tejada, “Colombian clays binary mixtures: Physical changes due to thermal treatments,” DYNA, vol. 87, no. 212, pp. 73–79, 2020, doi: 10.15446/dyna.v87n212.82285. [27]A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic crackingprocess of biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018, pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110. [28]A. Kadeche et al., “Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions,” Res. Chem. Intermed., vol. 46, no. 11, pp. 4985–5008, 2020, doi: 10.1007/s11164-020-04236-2. [29]C. I. R. De Oliveira, M. C. G. Rocha, A. L. N. DaSilva, and L. C. Bertolino, “Characterization of bentonite clays from Cubati, Paraíba Northeast of Brazil,” Ceramica, vol. 62, no. 363, pp. 272–277, 2016, doi:10.1590/0366-69132016623631970. [30]I. Z. Hager, Y. S. Rammah, H. A. Othman, E. M. Ibrahim, S. F. Hassan, and F. H. Sallam, “Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation,” J. Theor. Appl. Phys., vol. 13, no. 2, pp. 141–153, 2019, doi: 10.1007/ s40094-019-0332-5. [31]A. Tebeje, Z. Worku, T. T. I. Nkambule, and J. Fito, “Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent,” Int. J. Environ. Sci. Technol., no. 0123456789, 2021, doi: 10.1007/s13762-021-03230-4. [32]F. E. Özgüven, A. D. Pekdemir, M. Önal, and Y. Sarıkaya, “Characterization of a bentonite and its permanent aqueous suspension,” J. Turkish Chem. Soc.Sect. A Chem., vol. 7, no. 1, pp. 11–18, 2019, doi: 10.18596/jotcsa.535937. [33]S. Tao, S. Wei, and Y. Yulan, “Characterization of Expanded Graphite Microstructure and Fabrication of Composite Phase-Change Material for Energy Storage,” J. Mater. Civ. Eng., vol. 27, no. 4, p. 04014156, 2015, doi: 10.1061/(asce)mt.1943-5533.0001089. [34]M. Li, Z. Wu, H. Kao, and J. Tan, “Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material,” Energy Convers. Manag., vol. 52, no. 11, pp. 3275–3281, 2011, doi: 10.1016/j.enconman.2011.05.015. [35]S. M. Hosseini, E. Ghasemi, A. Fazlali, and D. E. Henneke, “The effect of nanoparticle concentration on the rheological properties of paraffin-based Co3O4 ferrofluids,” J. Nanoparticle Res., vol. 14, no. 7, 2012, doi: 10.1007/s11051-012-0858-9.
APA, Harvard, Vancouver, ISO, and other styles
7

"Xiu-Yi Zhi, Jin-Ming Yu, and Yuan-Kai Shi. Chinese Guidelines on the Diagnosis and Treatment of Primary Lung Cancer (2015 Version).Cancer. 2015;121:3165-3181." Cancer 122, no. 1 (October 20, 2015): 162. http://dx.doi.org/10.1002/cncr.29697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

林, 慶彰. "香港近五十年《詩經》研究述要." 人文中國學報, September 1, 2010, 383–430. http://dx.doi.org/10.24112/sinohumanitas.162537.

Full text
Abstract:
LANGUAGE NOTE | Document text in Chinese; abstract also in English. 本文敘述近五十年(1955—2007)香港學者研究《詩經》一書的成果。全文依林慶彰主編《經學研究論著目録(1912—1987)》之類目,分《詩經》總論、《詩經》基本問題、國風研究、雅頌研究、語言文字研究、分類研究、《詩經》反映的文化風貌、《詩經》學史研究、比較研究、國外研究等節敘述。基本問題和《詩經》學史又分數小節敘述。結論以爲香港的《詩經》研究,早期以何敬群、潘重規、李雲光等人的成果較豐碩;當代學者則以李家樹的研究成果最受矚目。年輕一輩則以李雄溪、陳致、盧鳴東的研究成果較爲凸出。香港的官方語言是英語,學者的英文水平比中國大陸和臺灣的學者高出許多,應利用此一優勢,多關心歐美的《詩經》研究成果。 This paper presents the results of the study of Shi jing by Hong Kong scholars over the past 50 years (1955-2007). This paper follows the categorization in Jing Xue Yan Jiu Lun Zhu Mu Lu (1912-1987) 經學研究論著目録 (Bibliography of materials for the study of Chinese classics), which includes general studies, primary issues, study of the Airs, study of the Elegantiae and Eulogies, linguistic and paleographical studies, categories, cultural features reflected in the Odes, history of the study of Shi Jing, comparative studies, study of the Odes outside Hong Kong. The parts of primary issues and the history of the study of Shi Jing are further divided into a number of subsections. The conclusion reached is that Ho Chien-tsung, Pan Chung-kwei and Lee Yun-kuang were leading scholars of the study of Shi Jing in Hong Kong in the old limes, with Lee Kar Shui contributing the most in the field. Lee Hung Kai, Chen Zhi and Lo Ming Tung are the most impressive among the younger generation of Hong Kong scholars. The official language in Hong Kong is English, so compared to scholars from the Mainland and Taiwan, the Hong Kong scholars have a better command of English, and therefore should use this advantage to be more involved in the contribution of the Western sinology to the study of Shi Jing.
APA, Harvard, Vancouver, ISO, and other styles
9

Sk, Farooq. "Journal Vol – 15 No -7, July 2020 Journal > Journal > Journal Vol – 15 No -7, July 2020 > Page 6 PERFORMANCE AND EMISSION CHARACTERISTICS OF GASOLINE-ETHANOL BLENDS ON PFI-SI ENGINE Authors: D.Vinay Kumar ,G.Samhita Priyadarsini,V.Jagadeesh Babu,Y.Sai Varun Teja, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00051 admin July 26, 2020 Abstract: Alcohol based fuels can be produced from renewable energy sources and has the potential to reduce pollutant emissions due to their oxygenated nature. Lighter alcohols like ethanol and methanol are easily miscible with gasoline and by blending alcohols with gasoline; a part of conventional fuel can be replaced while contributing to fuel economy. Several researchers tested various ethanol blends on different engine test rigs and identified ethanol as one of the most promising ecofriendly fuels for spark ignition engine. Its properties high octane number, high latent heat of vaporization give better performance characteristics and reduces exhaust emissions compared to gasoline. This paper focuses on studying the effects of blending 50 of ethanol by volume with gasoline as it hardly needs engine modifications. Gasoline (E0) and E50 fuels were investigated experimentally on single-cylinder, four-stroke port fuel injection spark ignition engine by varying engine speed from 1500 rpm to 3500 rpm. Performance Characteristics like torque, brake power, specific fuel consumption, and volumetric efficiency and exhaust emissions such as HC, CO, CO2, NOx were studied.. Keywords: Ethanol,Emissions,Gasoline,Port fuel Injection, Refference: I Badrawada, I. G. G., and A. A. P. Susastriawan. “Influence of ethanol–gasoline blend on performance and emission of four-stroke spark ignition motorcycle.” Clean Technologies and Environmental Policy (2019): 1-6. II Doğan, Battal, et al. “The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis.” Applied Thermal Engineering 120 (2017): 433-443. III Efemwenkiekie, U. Ka, et al. “Comparative Analysis of a Four Stroke Spark Ignition Engine Performance Using Local Ethanol and Gasoline Blends.” Procedia Manufacturing 35 (2019): 1079-1086. IV Galloni, E., F. Scala, and G. Fontana. “Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine.” Energy 170 (2019): 85-92. V Hasan, Ahmad O., et al. “Impact of changing combustion chamber geometry on emissions, and combustion characteristics of a single cylinder SI (spark ignition) engine fueled with ethanol/gasoline blends.” Fuel 231 (2018): 197-203. VI Mourad, M., and K. Mahmoud. “Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends.” Renewable Energy 143 (2019): 762-771. VII Singh, Ripudaman, et al. “Influence of fuel injection strategies on efficiency and particulate emissions of gasoline and ethanol blends in a turbocharged multi-cylinder direct injection engine.” International Journal of Engine Research (2019): 1468087419838393. VIII Thakur, Amit Kumar, et al. “Progress in performance analysis of ethanol-gasoline blends on SI engine.” Renewable and Sustainable Energy Reviews 69 (2017): 324-340. View Download Journal Vol – 15 No -7, July 2020 CHARACTERIZATION OF MATERIALS FOR CUSTOMIZED AFO USING ADDITIVE MANUFACTURING Authors: Gamini Suresh,Nagarjuna Maguluri,Kunchala Balakrishna, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00052 admin July 26, 2020 Abstract: Neurodegenerative conditions and compressed nerves often cause an abnormal foot drop that affects an individual gait and make it difficult to walk normally. Ankle Foot Orthosis (AFO) is the medical device which is recommended for the patients to improve the walking ability and decrease the risk of falls. Custom AFOs provide better fit, comfort and performance than pre-manufactured ones. The technique of 3D-printing is suitable for making custom AFOs. Fused deposition modelling (FDM) is a 3D-printing method for custom AFO applications with the desired resistance and material deposition rate. Generally, FDM is a thermal process; therefore materials thermal behaviour plays an important role in optimizing the performance of the printed parts. The objective of this study is to evaluate the thermal behaviour of PLA, ABS, nylon and WF-PLA filaments before manufacturing the AFO components using the FDM method. In the study, the sequence of testing materials provides a basic measuring method to investigate AFO device parts thermal stability. Thermal analysis (TG/DTG and DSC) was carried out before 3D printing is to characterize the thermal stability of each material. Keywords: Additive Manufacturing,Ankle Foot Orthosis (AFO),FusedDeposition Modelling,ThermalAnalysis, Refference: I. J. Pritchett, “Foot drop: Background, Anatomy, Pathophysiology,” Medscape Drugs, Dis. Proced., vol. 350, no. apr27_6, p. h1736, 2014. II. J. Graham, “Foot drop: Explaining the causes, characteristics and treatment,” Br. J. Neurosci. Nurs., vol. 6, no. 4, pp. 168–172, 2010. III. Y. Feng and Y. Song, “The Categories of AFO and Its Effect on Patients With Foot Impair: A Systemic Review,” Phys. Act. Heal., vol. 1, no. 1, pp. 8–16, 2017. IV. J. H. P. Pallari, K. W. Dalgarno, J. Munguia, L. Muraru, L. Peeraer, S. Telfer, and J. Woodburn” Design and additive fabrication of foot and ankle-foot orthoses”21st Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF 2010 (2010) 834-845 V. Y. Jin, Y. He, and A. Shih, “Process Planning for the Fuse Deposition Modeling of Ankle-Foot-Othoses,” Procedia CIRP, vol. 42, no. Isem Xviii, pp. 760–765, 2016. VI. R. K. Chen, Y. an Jin, J. Wensman, and A. Shih, “Additive manufacturing of custom orthoses and prostheses-A review,” Addit. Manuf., vol. 12, pp. 77–89, 2016. VII. A. D. Maso and F. Cosmi, “ScienceDirect 3D-printed ankle-foot orthosis : a design method,” Mater. Today Proc., vol. 12, pp. 252–261, 2019. VIII. B. Yuan et al., “Designing of a passive knee-assisting exoskeleton for weight-bearing,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10463 LNAI, pp. 273–285. IX. R. Spina, B. Cavalcante, and F. Lavecchia, “Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review.,” AIP Conf. Proc., vol. 1960, 2018. X. M. Srivastava, S. Maheshwari, T. K. Kundra, and S. Rathee, “ScienceDirect Multi-Response Optimization of Fused Deposition Modelling Process Parameters of ABS Using Response Surface Methodology ( RSM ) -Based Desirability Analysis,” Mater. Today Proc., vol. 4, no. 2, pp. 1972–1977, 2017. XI. E. Malekipour, S. Attoye, and H. El-Mounayri, “Investigation of Layer Based Thermal Behavior in Fused Deposition Modeling Process by Infrared Thermography,” Procedia Manuf., vol. 26, pp. 1014–1022, 2018. XII. A. Patar, N. Jamlus, K. Makhtar, J. Mahmud, and T. Komeda, “Development of dynamic ankle foot orthosis for therapeutic application,” Procedia Eng., vol. 41, no. Iris, pp. 1432–1440, 2012. XIII. Y. A. Jin, H. Li, Y. He, and J. Z. Fu, “Quantitative analysis of surface profile in fused deposition modelling,” Addit. Manuf., vol. 8, pp. 142–148, 2015. XIV. M. Walbran, K. Turner, and A. J. McDaid, “Customized 3D printed ankle-foot orthosis with adaptable carbon fibre composite spring joint,” Cogent Eng., vol. 3, no. 1, pp. 1–11, 2016. XV. N. Wierzbicka, F. Górski, R. Wichniarek, and W. Kuczko, “The effect of process parameters in fused deposition modelling on bonding degree and mechanical properties,” Adv. Sci. Technol. Res. J., vol. 11, no. 3, pp. 283–288, 2017. XVI. S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, 2016. XVII. S. Wojtyła, P. Klama, and T. Baran, “Is 3D printing safe ? Analysis of the thermal treatment of thermoplastics : ABS , PLA , PET , and,” vol. 9624, no. April, 2017. XVIII. G. Cicala et al., “Polylactide / lignin blends,” J. Therm. Anal. Calorim., 2017. XIX. S. Y. Lee, I. A. Kang, G. H. Doh, H. G. Yoon, B. D. Park, and Q. Wu, “Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment,” J. Thermoplast. Compos. Mater., vol. 21, no. 3, pp. 209–223, 2008. XX. Y. Tao, H. Wang, Z. Li, P. Li, and S. Q. Shi, “Development and application ofwood flour-filled polylactic acid composite filament for 3d printing,” Materials (Basel)., vol. 10, no. 4, pp. 1–6, 2017. XXI. D. Lewitus, S. McCarthy, A. Ophir, and S. Kenig, “The effect of nanoclays on the properties of PLLA-modified polymers Part 1: Mechanical and thermal properties,” J. Polym. Environ., vol. 14, no. 2, pp. 171–177, 2006. XXII. H. J. Chung, E. J. Lee, and S. T. Lim, “Comparison in glass transition and enthalpy relaxation between native and gelatinized rice starches,” Carbohydr. Polym., vol. 48, no. 3, pp. 287–298, 2002. View Download Journal Vol – 15 No -7, July 2020 CFD STUDIES OF MIXING BEHAVIOR OF INERT SAND WITH BIOMASS IN FLUIDIZED BED Authors: B.J.M.Rao,K.V.N.S.Rao, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00053 admin July 26, 2020 Abstract: Agriculture deposits, which remains unused and often causes ecological problems, could play an important role as an energy source to meet energy needs in developing countries ‘ rural areas. Moreover, energy levels in these deposits are low and need to be elevated by introducing efficient operative conversion technologies to utilize these residues as fuels. In this context, the utilization of a fluidized bed innovation enables a wide range of non-uniform-sized low-grade fuels to be effectively converted into other forms of energy.This study was undertaken to evaluate the effectiveness of fluidized conversion method for transformation of agricultural by-products such as rice husk, sawdust, and groundnut shells into useful energy. The present investigation was conducted to know the mixing characteristics of sand and fuel have been found by conducting experiments with mixing ratio of rice husk (1:13), saw dust(1:5) and groundnut shells (1:12), the variation of particle movement in the bed and mixing characteristics are analyzed. The impact of sand molecule size on the fluidization speed of two biofuel and sand components is studied and recommended for groundnut shells using a sand molecule of 0.6 mm size and for rice husk, sawdust 0.4 mm sand particle size. Also, establish that the particle size of sand has a significant effect on mingling features in case of sawdust. In the next part of the investigation, the CFD simulations of the fluidized bed are done to investigate the mixing behavior of sand and biomass particles. A set of simulations are conducted by ANSYS FLUENT16; the state of the bed is the same as that of the test. The findings were presented with the volume fraction of sand and biomass particles in the form of contour plots. Keywords: Biomass,sand,mixing behavior,Volume Fraction,CFD model, Refference: I Anil Tekale, Swapna God, Balaji Bedre, Pankaj Vaghela, Ganesh Madake, Suvarna Labade (2017), Energy Production from Biomass: Review, International Journal of Innovative Science and Research Technology, Volume 2, Issue 10, ISSN No: – 2456 – 2165. II Anil Kumar, Nitin Kumar , Prashant Baredar , Ashish Shukla (2015), A review on biomass energy resources, potential, conversion and policy in India, Renewable and Sustainable Energy, Reviews 45-530-539. III Zhenglan Li, ZhenhuaXue (2015), Review of Biomass Energy utilization technology, 3rd International Conference on Material, Mechanical and Manufacturing Engineering. IV Abdeen Mustafa Omer (2011), Biomass energy resources utilisation and waste management, Journal of Agricultural Biotechnology and Sustainable Development Vol. 3(8), pp. 149 -170 V Rijul Dhingra, Abhinav Jain, Abhishek Pandey, and Srishti Mahajan (2014), Assessment of Renewable Energy in India, International Journal of Environmental Science and Development, Vol. 5, No. 5. VI Paulina Drożyner, Wojciech Rejmer, Piotr Starowicz,AndrzejKlasa, Krystyna A. Skibniewska (2013), Biomass as a Renewable Source of Energy, Technical Sciences 16(3), 211–220. VII Souvik Das, Swati Sikdar (2016), A Review on the Non-conventional Energy Sources in Indian Perspective, International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 02. VIII Maninder, Rupinderjit Singh Kathuria, Sonia Grover, Using Agricultural Residues as a Biomass Briquetting: An Alternative Source of Energy, IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE), ISSN: 2278-1676 Volume 1, Issue 5 (July-Aug. 2012), PP 11-15. IX H.B.Goyal, DiptenduldDeal, R.C.Saxena (2006) Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, Volume 12, Issue 2Pages 504-517. X Digambar H. Patil, J. K. Shinde(2017) A Review Paper on Study of Bubbling Fluidized Bed Gasifier, International Journal for Innovative Research in Science & Technology, Volume 4, Issue 4 XI Neil T.M. Duffy, John A. Eaton (2013) Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD, Combustion and Flame 160, 2204–2220. XII Xing Wu, Kai Li, Feiyue and Xifeng Zhu (2017), Fluidization Behavior of Biomass Particles and its Improvement in a Cold Visualized Fluidized, Bio Resources 12(2), 3546-3559. XIII N.G. Deen, M. Van Sint Annaland, M.A. Van der Hoef, J.A.M. Kuipers (2007), Reviewof discrete particle modeling of fluidized beds, Chemical Engineering Science 62, 28 – 44. XIV BaskaraSethupathySubbaiah, Deepak Kumar Murugan, Dinesh Babu Deenadayalan, Dhamodharan.M.I (2014), Gasification of Biomass Using Fluidized Bed, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, Issue 2. XV Priyanka Kaushal, Tobias Pröll and Hermann Hofbauer, Modelling and simulation of the biomass fired dual fluidized bed gasifier at Guessing/Austria. XVI Dawit DiribaGuta (2012), Assessment of Biomass Fuel Resource Potential and Utilization in Ethiopia: Sourcing Strategies for Renewable Energies, International Journal of Renewable Energy Research, Vol.2, and No.1. View Download Journal Vol – 15 No -7, July 2020 AN APPROACH FOR OPTIMISING THE FLOW RATE CONDITIONS OF A DIVERGENT NOZZLE UNDER DIFFERENT ANGULAR CONDITIONS Authors: Lam Ratna Raju ,Ch. Pavan Satyanarayana,Neelamsetty Vijaya Kavya, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00054 admin July 26, 2020 Abstract: A spout is a device which is used to offer the guidance to the gases leaving the burning chamber. Spout is a chamber which has a capability to change over the thermo-compound essentials created within the ignition chamber into lively vitality. The spout adjustments over the low speed, excessive weight, excessive temperature fuel in the consuming chamber into rapid gasoline of decrease weight and low temperature. An exciting spout is used if the spout weight volume is superior vehicles in supersonic airplane machines commonly combine a few sort of a distinctive spout. Our exam is surpassed on the use of programming like Ansys Workbench for arranging of the spout and Fluent 15.0 for separating the streams inside the spout. The events of staggers for the pipe formed spouts have been seen close by trade parameters for numerous considered one of a kind edges. The parameters underneath recognition are differentiated and that of shape spout for singular terrific edges by using keeping up the gulf, outlet and throat width and lengths of joined together and diverse quantities as same. The simultaneous component and throat expansiveness are kept regular over the cases.The surprise of stun became envisioned and the effects exhibited near closeness in direction of motion of Mach circle and its appearance plans as exposed in numerous preliminary considers on advancement in pipe molded particular spouts with assorted edges four°,7°, 10°, Occurrence of stun is seen with higher special factors Keywords: Nozzle,Supersonic Rocket Engine,Divergent edges, Refference: I. Varun, R.; Sundararajan,T.; Usha,R.; Srinivasan,ok.; Interaction among particle-laden under increased twin supersonic jets, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 2010 224: 1005. II. Pandey,K.M.; Singh, A.P.; CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software, International Journal of Chemical Engineering and Applications, Vol. 1, No. 2, August 2010, ISSN: 2010-0221. III. Natta, Pardhasaradhi.; Kumar, V.Ranjith.; Rao, Dr. Y.V. Hanumantha.; Flow Analysis of Rocket Nozzle Using Computational Fluid Dynamics (Cfd), International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622,Vol. 2, Issue five, September- October 2012, pp.1226-1235. IV. K.M. Pandey, Member IACSIT and A.P. Singh. K.M.Pandey, Member, IACSIT and S.K.YadavK.M.Pandey and S.K.Yadav, ―CFD Analysis of a Rocket Nozzle with Two Inlets at Mach2.1, Journal of Environmental Research and Development, Vol 5, No 2, 2010, pp- 308-321. V. Shigeru Aso, ArifNur Hakim, Shingo Miyamoto, Kei Inoue and Yasuhiro Tani “ Fundamental examine of supersonic combustion in natural air waft with use of surprise tunnel” Department of Aeronautics and Astronautics, Kyushu University, Japan , Acta Astronautica 57 (2005) 384 – 389. VI. P. Padmanathan, Dr. S. Vaidyanathan, Computational Analysis of Shockwave in Convergent Divergent Nozzle, International Journal of Engineering Research and Applications (IJERA), ISSN: 2248-9622 , Vol. 2, Issue 2,Mar-Apr 2012, pp.1597-1605. VII. Adamson, T.C., Jr., and Nicholls., J.A., “On the shape of jets from Highly below improved Nozzles into Still Air,” Journal of the Aerospace Sciences, Vol.26, No.1, Jan 1959, pp. Sixteen-24. VIII. Lewis, C. H., Jr., and Carlson, D. J., “Normal Shock Location in underneath increased Gas and Gas particle Jets,” AIAA Journal, Vol 2, No.4, April 1964, pp. 776-777. Books IX. Anderson, John D.Jr.; Modern Compressible Flow with Historical Perspective, Third edition, 2012 X. Versteeg. H.; Malalasekra.W.; An Introduction to Computational Fluid Dynamics The Finite Volume Method, Second Edition,2009. XI. H.K.Versteeg and W.Malala Sekhara, “An introduction to Computational fluid Dynamics”, British Library cataloguing pub, 4th version, 1996. XII. Lars Davidson, “An introduction to turbulenceModels”, Department of thermo and fluid dynamics, Chalmers college of era, Goteborg, Sweden, November, 2003. XIII. Karna s. Patel, “CFD analysis of an aerofoil”, International Journal of engineering studies,2009. XIV. K.M. Pandey, Member IACSIT and A.P. Singh “CFD Analysis of Conical Nozzle for Mach 3 at Various Angles of Divergence with Fluent Software,2017. XV. P. Parthiban, M. Robert Sagayadoss, T. Ambikapathi, Design And Analysis Of Rocket Engine Nozzle by way of the usage of CFD and Optimization of Nozzle parameters, International Journal of Engineering Research, Vol.Three., Issue.5., 2015 (Sept.-Oct.). View Download Journal Vol – 15 No -7, July 2020 DESIGN OPTIMIZATION OF DRIVE SHAFT FOR AN AUTOMOBILE APPLICATIONS Authors: Govindarajulu Eedara,P. N. Manthru Naik, DOI NO: https://doi.org/10.26782/jmcms.2020.07.00055 admin July 26, 2020 Abstract: The driveshaft is a mechanical instrument that is used in automobiles. The other name of the drive shaft is driveshaft is prop shaft. It has one long cylindrical structure consist of two universal joints. By using the driveshaft it transfers the rotary motion to the differential by using the helical gearbox. By using this rotary motion the rare wheels will run. The 3dimensional Model of automobile drive Shaft is designed using CATIA parametric which enables product development processes and thereby brings about an optimum design. Now a day’s steel is using the best material for the driveshaft.In this paper replacing the composite materials (Kevlar, e-glass epoxy) instead of steel material and itreduces a considerable amount of weight when compared to the conventional steel shaft. The composite driveshaft have high modulus is designed by using CATIA software and tested in ANSYS for optimization of design or material check and providing the best datebook Keywords: The driveshaft ,CATIA,automobile,steel,composite materials,ANSYS,Kevla,e-glass epoxy, Refference: I A.R. Abu Talib, Aidy Ali, Mohamed A. Badie, Nur Azienda Che Lah, A.F. Golestaneh Developing a hybrid, carbon/glass-fiber-reinforced, epoxy composite automotive driveshaft, Material and Design, volume31, 2010, pp 514 – 521 II ErcanSevkat, Hikmet Tumer, Residual torsional properties of composite shafts subjected to impact Loadings, Materials, and design, volume – 51, 2013, pp -956-967. III H. Bayrakceken, S. Tasgetiren, I. Yavuz two cases of failure in the power transmission system on vehicles: A Universal joint yoke and a drive shaft, volume-14,2007,pp71. IV H.B.H. Gubran, Dynamics of hybrid shafts, Mechanics Research communication, volume – 32, 2005, pp – 368-374. V Shaw D, Simitses DJ, SheinmanI. Imperfection sensitivity of laminated cylindrical shells in torsion and axial compression. ComposStruct 1985; 4(3) pp:35–60. View Download Journal Vol – 15 No -7, July 2020 EXPERIMENTAL EVALUATION OF AN SI ENGINE USING E10 EQUIVALENT TERNARY GASOLINE- ALCOHOL BLENDS." JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES 15, no. 7 (July 26, 2020). http://dx.doi.org/10.26782/jmcms.2020.07.00056.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Kao shi yuan"

1

Wong, Man-kin. "Cong duo yuan zhu yi de guan dian kan ying de de yi yi : dui Wo'erze (Michael Walzer) zheng yi li lun de chan shi /." View abstract or full-text, 2003. http://library.ust.hk/cgi/db/thesis.pl?HUMA%202003%20WONGM.

Full text
Abstract:
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 119-123). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Shen-Hua, and 呂慎華. "A Research of Yuan Shih-Kai''s Diplomacy in Late Ch''ing Dynasty." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/89596291645762502269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang-Rou-Jiun and 黃柔鈞. "Whole Origin Wang Ren Shiu 《Kan Miou Bu Chiue Chie Yun》the Whole Origin Wang Ren Shiu 《Kan Miou Bu Chiue Chie Yun》the Department's Whole Origin Wang Ren Shiu 《Kan Miou Bu Chiue Chie Yun》the Allied Method Analyze and Discuss." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/79656080488953183234.

Full text
Abstract:
碩士
玄奘大學
中國語文學系碩博士班
96
The content of this thesis method includes: object, purpose, material, manage then system(establish first, principle, principle), step and conclusion.Anti- slice a department to unite is research 《Chie Yun》the department rhyme book sound of a character system of basic method, from Manchu Dynasty Chen Li established, is always all used.However the department unite of step, the but again hasn't been being in detail illustrated.This text with< Whole Origin Wang Ren Shiu 《Kan Miou Bu Chiue Chie Yun》the Department's Allied Method Analyze and Discuss is, department allied the object target at Tang. Wang Ren Shiu 《Kan Miou Bu Chiue Chie Yun》one book, want formerly person's department allied 《Chie Yun 》of the dialectical in experience pay a set of department allied method.Believing the consubstantial thing can be analytical in same way, want to make use of 《Chie Yun 》the department unite of experience dialectical pay 《Kan Miou Bu Chiue Chie Yun》department allied method, first essentials but settle each other of relatives relation.From a purpose, style all want through review phonic means, the function strengthened to rhyme, its rhyme number, the rhyme preface is together also close by, and affirm each other a department. Hence synthesize each parlance, and check it in actually do, the allied to department method does one pure.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Kao shi yuan"

1

Yuan shi cong kao. Beijing Shi: Min zu chu ban she, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Jinsheng. Kao shi yuan zhuan ji ren yuan kao shi zhi du kao cha bao gao. [Taipei: s.n.], 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yingsheng, Chang, ed. Zhongguo gong yuan yuan lin shi kao. Beijing: Nong ye chu ban she, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiande, Su, ed. Yuan Ming Yuan shi ji tu kao. Beijing Shi: Xue yuan chu ban she, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

1923-, Chang Yingsheng, ed. Zhongguo gong yuan yuan lin shi kao. Beijing Shi: Xue yuan chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhengxiong, Liao, ed. Zheng shi yuan liu kao. Taibei Xian Yonghe Shi: Hua mu lan wen hua gong zuo fang, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meng Yuan shi kao lun. Lanzhou Shi: Lanzhou da xue chu ban she, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yan, Fukui. Yuan gu ren wen shi kao shi. Beijing Shi: Zhongguo wen shi chu ban she, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yuan shi Ru jia kao shu. Taibei Shi: Wen jin chu ban she, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liao Jin Yuan shi kao suo. Beijing Shi: Zhonghua shu ju, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography