Academic literature on the topic 'Karush-Kuhn-Tucker conditions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Karush-Kuhn-Tucker conditions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Karush-Kuhn-Tucker conditions"
Pan, Shaohua, Shujun Bi, and Jein-Shan Chen. "Nonsingularity Conditions for FB System of Reformulating Nonlinear Second-Order Cone Programming." Abstract and Applied Analysis 2013 (2013): 1–21. http://dx.doi.org/10.1155/2013/602735.
Full textJahn, Johannes. "Karush–Kuhn–Tucker Conditions in Set Optimization." Journal of Optimization Theory and Applications 172, no. 3 (January 30, 2017): 707–25. http://dx.doi.org/10.1007/s10957-017-1066-7.
Full textChen, Han, and Pasquale Malacaria. "Studying Maximum Information Leakage Using Karush-Kuhn-Tucker Conditions." Electronic Proceedings in Theoretical Computer Science 7 (October 23, 2009): 1–15. http://dx.doi.org/10.4204/eptcs.7.1.
Full textKhanh, Phan Quoc, and Nguyen Minh Tung. "Higher-Order Karush--Kuhn--Tucker Conditions in Nonsmooth Optimization." SIAM Journal on Optimization 28, no. 1 (January 2018): 820–48. http://dx.doi.org/10.1137/16m1079920.
Full textKim, Do Sang, and Nguyen Van Tuyen. "A note on second-order Karush–Kuhn–Tucker necessary optimality conditions for smooth vector optimization problems." RAIRO - Operations Research 52, no. 2 (April 2018): 567–75. http://dx.doi.org/10.1051/ro/2017026.
Full textAbdulaleem, Najeeb. "E-invexity and generalized E-invexity in E-differentiable multiobjective programming." ITM Web of Conferences 24 (2019): 01002. http://dx.doi.org/10.1051/itmconf/20192401002.
Full textLuu, Do Van, and Tran Van Su. "Contingent derivatives and necessary efficiency conditions for vector equilibrium problems with constraints." RAIRO - Operations Research 52, no. 2 (April 2018): 543–59. http://dx.doi.org/10.1051/ro/2017042.
Full textAntczak, Tadeusz. "Multiobjective programming under nondifferentiable G-V-invexity." Filomat 30, no. 11 (2016): 2909–23. http://dx.doi.org/10.2298/fil1611909a.
Full textHaeser, Gabriel, and Alberto Ramos. "Constraint Qualifications for Karush–Kuhn–Tucker Conditions in Multiobjective Optimization." Journal of Optimization Theory and Applications 187, no. 2 (September 29, 2020): 469–87. http://dx.doi.org/10.1007/s10957-020-01749-z.
Full textChalco-Cano, Y., W. A. Lodwick, R. Osuna-Gómez, and A. Rufián-Lizana. "The Karush–Kuhn–Tucker optimality conditions for fuzzy optimization problems." Fuzzy Optimization and Decision Making 15, no. 1 (April 23, 2015): 57–73. http://dx.doi.org/10.1007/s10700-015-9213-9.
Full textDissertations / Theses on the topic "Karush-Kuhn-Tucker conditions"
Oliveira, Fabiana Rodrigues de. "Estudo de alguns métodos clássicos de otimização restrita não linear." Universidade Federal de Uberlândia, 2012. https://repositorio.ufu.br/handle/123456789/16795.
Full textIn this work some classical methods for constrained nonlinear optimization are studied. The mathematical formulations for the optimization problem with equality and inequality constrained, convergence properties and algorithms are presented. Furthermore, optimality conditions of rst order (Karush-Kuhn-Tucker conditions) and of second order. These conditions are essential for the demonstration of many results. Among the methods studied, some techniques transform the original problem into an unconstrained problem (Penalty Methods, Augmented Lagrange Multipliers Method). In others methods, the original problem is modeled as one or as a sequence of quadratic subproblems subject to linear constraints (Quadratic Programming Method, Sequential Quadratic Programming Method). In order to illustrate and compare the performance of the methods studied, two nonlinear optimization problems are considered: a bi-dimensional problem and a problem of mass minimization of a coil spring. The obtained results are analyzed and confronted with each other.
Neste trabalho são estudados alguns métodos clássicos de otimização restrita não linear. São abordadas a formulação matemática para o problema de otimização com restrições de igualdade e desigualdade, propriedades de convergência e algoritmos. Além disso, são relatadas as condições de otimalidade de primeira ordem (condições de Karush-Kuhn-Tucker) e de segunda ordem. Estas condições são essenciais para a demonstração de muitos resultados. Dentre os métodos estudados, algumas técnicas transformam o problema original em um problema irrestrito (Métodos de Penalidade, Método dos Multiplicadores de Lagrange Aumentado). Em outros métodos, o problema original é modelado como um ou uma seqüência de subproblemas quadráticos sujeito _a restrições lineares (Método de Programação Quadrática, Método de Programação Quadrática Seqüencial). A fim de ilustrar e comparar o desempenho dos métodos estudados são considerados dois problemas de otimização não linear: um problema bidimensional e o problema de minimização da massa de uma mola helicoidal. Os resultados obtidos são examinados e confrontados entre si.
Mestre em Matemática
Hošek, Jaromír. "Optimalizační modely pro energetické využití odpadu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232178.
Full textYucel, Gizem. "A Reactionary Obstacle Avoidance Algorithm For Autonomous Vehicles." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614480/index.pdf.
Full textVillanueva, Fabiola Roxana. "Contributions in interval optimization and interval optimal control /." São José do Rio Preto, 2020. http://hdl.handle.net/11449/192795.
Full textResumo: Neste trabalho, primeiramente, serão apresentados problemas de otimização nos quais a função objetivo é de múltiplas variáveis e de valor intervalar e as restrições de desigualdade são dadas por funcionais clássicos, isto é, de valor real. Serão dadas as condições de otimalidade usando a E−diferenciabilidade e, depois, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade usando a gH−diferenciabilidade total são do tipo KKT e as suficientes são do tipo de convexidade generalizada. Em seguida, serão estabelecidos problemas de controle ótimo nos quais a funçãao objetivo também é com valor intervalar de múltiplas variáveis e as restrições estão na forma de desigualdades e igualdades clássicas. Serão fornecidas as condições de otimalidade usando o conceito de Lipschitz para funções intervalares de várias variáveis e, logo, a gH−diferenciabilidade total das funções com valor intervalar de várias variáveis. As condições necessárias de otimalidade, usando a gH−diferenciabilidade total, estão na forma do célebre Princípio do Máximo de Pontryagin, mas desta vez na versão intervalar.
Abstract: In this work, firstly, it will be presented optimization problems in which the objective function is interval−valued of multiple variables and the inequality constraints are given by classical functionals, that is, real−valued ones. It will be given the optimality conditions using the E−differentiability and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability are of KKT−type and the sufficient ones are of generalized convexity type. Next, it will be established optimal control problems in which the objective function is also interval−valued of multiple variables and the constraints are in the form of classical inequalities and equalities. It will be furnished the optimality conditions using the Lipschitz concept for interval−valued functions of several variables and then the total gH−differentiability of interval−valued functions of several variables. The necessary optimality conditions using the total gH−differentiability is in the form of the celebrated local Pontryagin Maximum Principle, but this time in the intervalar version.
Doutor
Mehlitz, Patrick. "Optimierung in normierten Räumen." Thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-119320.
Full textJavad, Mirzaei. "Sum-rate maximization for active channels." Thesis, 2013. http://hdl.handle.net/10155/308.
Full textUOIT
Book chapters on the topic "Karush-Kuhn-Tucker conditions"
Peressini, Anthony L., J. J. Uhl, and Francis E. Sullivan. "Convex Programming and the Karush-Kuhn-Tucker Conditions." In The Mathematics of Nonlinear Programming, 156–214. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-1025-2_5.
Full textFrench, Mark. "General Conditions for Solving Optimization Problems: Karush-Kuhn-Tucker Conditions." In Fundamentals of Optimization, 143–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76192-3_6.
Full textZhang, Ying, Xizhao Wang, and Junhai Zhai. "A Fast Support Vector Machine Classification Algorithm Based on Karush-Kuhn-Tucker Conditions." In Lecture Notes in Computer Science, 382–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10646-0_46.
Full text"Karush-Kuhn-Tucker (KKT) Conditions." In Encyclopedia of Operations Research and Management Science, 833–34. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_200359.
Full text"4 Karush–Kuhn–Tucker conditions and duality." In Nonlinear Programming, 69–108. De Gruyter, 2014. http://dx.doi.org/10.1515/9783110315288.69.
Full text"The Fritz John and Karush-Kuhn-tucker Optimality Conditions." In Nonlinear Programming, 163–236. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471787779.ch4.
Full textConference papers on the topic "Karush-Kuhn-Tucker conditions"
Ali, Yasir, Zhen Shen, Fenghua Zhu, Gang Xiong, Shichao Chen, Yuanqing Xia, and Fei-Yue Wang. "Solutions Verification for Cloud-Based Networked Control System using Karush-Kuhn-Tucker Conditions." In 2018 Chinese Automation Congress (CAC). IEEE, 2018. http://dx.doi.org/10.1109/cac.2018.8623109.
Full textChalco-Cano, Y., W. A. Lodwick, and H. Roman-Flores. "The Karush-Kuhn-Tucker optimality conditions for a class of fuzzy optimization problems using strongly generalized derivative." In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS). IEEE, 2013. http://dx.doi.org/10.1109/ifsa-nafips.2013.6608400.
Full textHsu, Yeh-Liang. "Notes on Interpreting Monotonicity Analysis Using Karush-Kuhn-Tucker Conditions and MONO: A Logic Program for Monotonicity Analysis." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0397.
Full textDong, Jiawei, and Won-jong Kim. "Bandwidth Allocation of Networked Control Systems With Exponential Approximation." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3778.
Full textRao, J. R. Jagannatha, and Panos Y. Papalambros. "Remarks on Conditions for the Validity of Parametric Decomposition in Optimal Design." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0049.
Full textWilliams, Brian C., and Jonathan Cagan. "Activity Analysis: Simplifying Optimal Design Problems Through Qualitative Partitioning." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0179.
Full textKanakasabai, Pugazhendhi, and Anoop K. Dhingra. "An Approach for Uni-Level Reliability Based Design Optimization Using Cross-Entropy Method." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70691.
Full textRice, Andrew T., and Perry Y. Li. "Optimal Efficiency-Power Tradeoff for an Air Motor/Compressor With Volume Varying Heat Transfer Capability." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6076.
Full textLiang, Jinghong, Zissimos P. Mourelatos, and Jian Tu. "A Single-Loop Method for Reliability-Based Design Optimization." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57255.
Full textXu, Meng, Georges Fadel, and Margaret M. Wiecek. "Dual Residual for Distributed Augmented Lagrangian Coordination Based on Optimality Conditions." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47002.
Full text