Academic literature on the topic 'Kato-smoothing effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kato-smoothing effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kato-smoothing effect"

1

Aloui, Lassaad, Moez Khenissi, and Luc Robbiano. "The Kato smoothing effect for regularized Schrödinger equations in exterior domains." Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34, no. 7 (December 2017): 1759–92. http://dx.doi.org/10.1016/j.anihpc.2016.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Robbiano, Luc, and Claude Zuily. "Remark on the Kato Smoothing Effect for Schrödinger Equation with Superquadratic Potentials." Communications in Partial Differential Equations 33, no. 4 (April 7, 2008): 718–27. http://dx.doi.org/10.1080/03605300701517861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aloui, Lassaad, and Imen El Khal El Taief. "The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds." Mathematical Control & Related Fields 10, no. 4 (2020): 699–714. http://dx.doi.org/10.3934/mcrf.2020016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tomoeda, Kyoko. "Local Analyticity in the Time and Space Variables and the Smoothing Effect for the Fifth-Order KdV-Type Equation." Advances in Mathematical Physics 2011 (2011): 1–39. http://dx.doi.org/10.1155/2011/238138.

Full text
Abstract:
We consider the initial value problem for the reduced fifth-order KdV-type equation: , , , . This equation is obtained by removing the nonlinear term from the fifth-order KdV equation. We show the existence of the local solution which is real analytic in both time and space variables if the initial data satisfies the condition , for some constant . Moreover, the smoothing effect for this equation is obtained. The proof of our main result is based on the contraction principle and the bootstrap argument used in the third-order KdV equation (K. Kato and Ogawa 2000). The key of the proof is to obtain the estimate of on the Bourgain space, which is accomplished by improving Kenig et al.'s method used in (Kenig et al. 1996).
APA, Harvard, Vancouver, ISO, and other styles
5

Capistrano–Filho, Roberto A., Ademir F. Pazoto, and Lionel Rosier. "Control of a Boussinesq system of KdV–KdV type on a bounded interval." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 58. http://dx.doi.org/10.1051/cocv/2018036.

Full text
Abstract:
We consider a Boussinesq system of KdV–KdV type introduced by J.L. Bona, M. Chen and J.-C. Saut as a model for the motion of small amplitude long waves on the surface of an ideal fluid. This system of two equations can describe the propagation of waves in both directions, while the single KdV equation is limited to unidirectional waves. We are concerned here with the exact controllability of the Boussinesq system by using some boundary controls. By reducing the controllability problem to a spectral problem which is solved by using the Paley–Wiener method introduced by the third author for KdV, we determine explicitly all the critical lengths for which the exact controllability fails for the linearized system, and give a complete picture of the controllability results with one or two boundary controls of Dirichlet or Neumann type. The extension of the exact controllability to the full Boussinesq system is derived in the energy space in the case of a control of Neumann type. It is obtained by incorporating a boundary feedback in the control in order to ensure a global Kato smoothing effect.
APA, Harvard, Vancouver, ISO, and other styles
6

Robbiano, L., and C. Zuily. "The Kato Smoothing Effect for Schrodinger Equations with Unbounded Potentials in Exterior Domains." International Mathematics Research Notices, February 7, 2009. http://dx.doi.org/10.1093/imrn/rnn169.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Kato-smoothing effect"

1

Audiard, Corentin. "Problèmes aux limites dispersifs linéaires non homogènes, application au système d’Euler-Korteweg." Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10261/document.

Full text
Abstract:
Le but principal de cette thèse est d'obtenir des résultats d'existence et d'unicité pour des équations aux dérivées partielles dispersives avec conditions aux limites non homogènes. L'approche privilégiée est l'adaptation de techniques issues de la théorie classique des problèmes aux limites hyperboliques (que l'on rappelle au chapitre 1, en améliorant légèrement un résultat). On met en évidence au chapitre 3 une classe d'équations linéaires qu'on peut qualifier de dispersives satisfaisant des critères “minimaux”, et des résultats d'existence et d'unicité pour le problème aux limites associé à celles-ci sont obtenus au chapitre 4.Le fil rouge du mémoire est le modèle d'Euler-Korteweg, pour lequel on aborde l'analyse du problème aux limites sur une version linéarisée au chapitre 2. Toujours pour cette version linéarisée, on prouve un effet Kato-régularisant au chapitre 3. Enfin l'analyse numérique du modèle est abordée au chapitre 5. Pour cela, on commence par utiliser les résultats précédents pour décrire une manière simple d'obtenir les conditions aux limites dites transparentes dans le cadre des équations précédemment décrites puis on utilise ces conditions aux limites pour le modèle d'Euler-Korteweg semi-linéaire afin d'observer la stabilité/instabilité des solitons, ainsi qu'un phénomène d'explosion en temps fini
The main aim of this thesis is to obtain well-posedness results for boundary value problems especially with non-homogeneous boundary conditions. The approach that we chose here is to adapt technics from the classical theory of hyperbolic boundary value problems (for which we give a brief survey in the first chapter, and a slight generalization). In chapter 3 we delimitate a class of linear dispersive equations, and we obtain well-posedness results for corresponding boundary value problems in chapter 4.The leading thread of this memoir is the Euler-Korteweg model. The boundary value problem for a linearized version is investigated in chapter 2, and the Kato-smoothing effect is proved (also for the linearized model) in chapter 3. Finally, the numerical analysis of the model is made in chapter 5. To begin with, we use the previous abstract results to show a simple way of deriving the so-called transparent boundary conditions for the equations outlined in chapter 3, and those conditions are then used to numerically solve the semi-linear Euler-Korteweg model. This allow us to observe the stability and instability of solitons, as well as a finite time blow up
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kato-smoothing effect"

1

Robbiano, Luc. "Kato Smoothing Effect for Schrödinger Operator." In Studies in Phase Space Analysis with Applications to PDEs, 355–69. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6348-1_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography