Journal articles on the topic 'Kelch-like ECH-associated protein 1'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Kelch-like ECH-associated protein 1.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Scheffler, Matthias. "„Kelch-like ECH-associated protein 1“ (KEAP1)." Trillium Krebsmedizin 33, no. 4 (2024): 276–81. http://dx.doi.org/10.47184/tk.2024.04.8.
Full textCai, Min, Li Tong, Beibei Dong, Wugang Hou, Likai Shi, and Hailong Dong. "Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2–related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning." Anesthesiology 126, no. 3 (2017): 507–21. http://dx.doi.org/10.1097/aln.0000000000001485.
Full textHolland, Ryan, and James C. Fishbein. "Chemistry of the Cysteine Sensors in Kelch-Like ECH-Associated Protein 1." Antioxidants & Redox Signaling 13, no. 11 (2010): 1749–61. http://dx.doi.org/10.1089/ars.2010.3273.
Full textSykiotis, Gerasimos P. "Keap1/Nrf2 Signaling Pathway." Antioxidants 10, no. 6 (2021): 828. http://dx.doi.org/10.3390/antiox10060828.
Full textQu, Lingzhi, Ming Guo, Huajun Zhang, et al. "Characterization of the modification of Kelch-like ECH-associated protein 1 by different fumarates." Biochemical and Biophysical Research Communications 605 (May 2022): 9–15. http://dx.doi.org/10.1016/j.bbrc.2022.03.059.
Full textDe Vita, Simona, Milena Masullo, Sabrina Grambone, Paloma Bermejo Bescós, Sonia Piacente, and Giuseppe Bifulco. "Demethylcalabaxanthone from Garcinia mangostana Exerts Antioxidant Effects through the Activation of the Nrf2 Pathway as Assessed via Molecular Docking and Biological Evaluation." Antioxidants 12, no. 11 (2023): 1980. http://dx.doi.org/10.3390/antiox12111980.
Full textCairang, Nanjia, Yanran Wu, Shumeng Zhi, et al. "5-(3-(N-(Carboxymethyl)naphthalene-2-sulfonamido)phenyl)-1-ethyl-1H-pyrrole-2-carboxylic acid as a Keap1–Nrf2 inhibitor for cerebral ischemia/reperfusion injury treatment." RSC Advances 15, no. 2 (2025): 1052–59. https://doi.org/10.1039/d4ra06512c.
Full textMulvaney, Kathleen M., Jacob P. Matson, Priscila F. Siesser, et al. "Identification and Characterization of MCM3 as a Kelch-like ECH-associated Protein 1 (KEAP1) Substrate." Journal of Biological Chemistry 291, no. 45 (2016): 23719–33. http://dx.doi.org/10.1074/jbc.m116.729418.
Full textSogabe, Satoshi, Kotaro Sakamoto, Yusuke Kamada, Akito Kadotani, Yasunori Fukuda, and Jun-ichi Sakamoto. "Discovery of a Kelch-like ECH-associated protein 1-inhibitory tetrapeptide and its structural characterization." Biochemical and Biophysical Research Communications 486, no. 3 (2017): 620–25. http://dx.doi.org/10.1016/j.bbrc.2017.03.038.
Full textLong, Xiangju, Zhe Liu, Yanan Sun, and Hong Zhang. "The Protective Role of Nrf2 in Renal Tubular Cells in Oxidised Low-Density Lipoprotein-Induced Fibrosis." Analytical Cellular Pathology 2023 (March 11, 2023): 1–8. http://dx.doi.org/10.1155/2023/4134928.
Full textUnoki, Takamitsu, Masahiro Akiyama, and Yoshito Kumagai. "Nrf2 Activation and Its Coordination with the Protective Defense Systems in Response to Electrophilic Stress." International Journal of Molecular Sciences 21, no. 2 (2020): 545. http://dx.doi.org/10.3390/ijms21020545.
Full textTaliani, Sabrina, Federico Da Settimo, Claudia Martini, Sonia Laneri, Ettore Novellino, and Giovanni Greco. "Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets." Molecules 25, no. 10 (2020): 2331. http://dx.doi.org/10.3390/molecules25102331.
Full textKumagai, Yoshito, Hironori Kanda, Yasuhiro Shinkai, and Takashi Toyama. "The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury." Oxidative Medicine and Cellular Longevity 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/848279.
Full textCanning, Peter, and Alex N. Bullock. "New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases." Biochemical Society Transactions 42, no. 1 (2014): 103–7. http://dx.doi.org/10.1042/bst20130215.
Full textZhang, Yuesheng, and Gary B. Gordon. "A strategy for cancer prevention: Stimulation of the Nrf2-ARE signaling pathway." Molecular Cancer Therapeutics 3, no. 7 (2004): 885–93. http://dx.doi.org/10.1158/1535-7163.885.3.7.
Full textPallesen, Jakob S., Dilip Narayanan, Kim T. Tran, et al. "Deconstructing Noncovalent Kelch-like ECH-Associated Protein 1 (Keap1) Inhibitors into Fragments to Reconstruct New Potent Compounds." Journal of Medicinal Chemistry 64, no. 8 (2021): 4623–61. http://dx.doi.org/10.1021/acs.jmedchem.0c02094.
Full textStrachan, Gordon D., Kathleen L. Morgan, Linda L. Otis, et al. "Fetal Alz-50 Clone 1 Interacts with the Human Orthologue of the Kelch-like Ech-Associated Protein†." Biochemistry 43, no. 38 (2004): 12113–22. http://dx.doi.org/10.1021/bi0494166.
Full textEdwards, Megan R., Britney Johnson, Chad E. Mire, et al. "The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway." Cell Reports 6, no. 6 (2014): 1017–25. https://doi.org/10.5281/zenodo.13465828.
Full textEdwards, Megan R., Britney Johnson, Chad E. Mire, et al. "The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway." Cell Reports 6, no. 6 (2014): 1017–25. https://doi.org/10.5281/zenodo.13465828.
Full textEdwards, Megan R., Britney Johnson, Chad E. Mire, et al. "The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway." Cell Reports 6, no. 6 (2014): 1017–25. https://doi.org/10.5281/zenodo.13465828.
Full textEdwards, Megan R., Britney Johnson, Chad E. Mire, et al. "The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway." Cell Reports 6, no. 6 (2014): 1017–25. https://doi.org/10.5281/zenodo.13465828.
Full textEdwards, Megan R., Britney Johnson, Chad E. Mire, et al. "The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway." Cell Reports 6, no. 6 (2014): 1017–25. https://doi.org/10.5281/zenodo.13465828.
Full textWilson, Carter J., Megan Chang, Mikko Karttunen, and Wing-Yiu Choy. "KEAP1 Cancer Mutants: A Large-Scale Molecular Dynamics Study of Protein Stability." International Journal of Molecular Sciences 22, no. 10 (2021): 5408. http://dx.doi.org/10.3390/ijms22105408.
Full textNgo, Vy, Nadun C. Karunatilleke, Anne Brickenden, Wing-Yiu Choy, and Martin L. Duennwald. "Oxidative Stress-Induced Misfolding and Inclusion Formation of Nrf2 and Keap1." Antioxidants 11, no. 2 (2022): 243. http://dx.doi.org/10.3390/antiox11020243.
Full textEdwards, Megan R., та Christopher F. Basler. "Marburg Virus VP24 Protein Relieves Suppression of the NF–κB Pathway Through Interaction With Kelch-like ECH-Associated Protein 1". Journal of Infectious Diseases 212, suppl 2 (2015): S154—S159. http://dx.doi.org/10.1093/infdis/jiv050.
Full textLazzara, Phillip R., Brian P. David, Aparna Ankireddy, et al. "Isoquinoline Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-like 2 (KEAP1-NRF2) Inhibitors with High Metabolic Stability." Journal of Medicinal Chemistry 63, no. 12 (2019): 6547–60. http://dx.doi.org/10.1021/acs.jmedchem.9b01074.
Full textAbdelmawgood, Islam Ahmed, Noha Ahmed Mahana, Abeer Mahmoud Badr, et al. "Echinochrome Ameliorates Physiological, Immunological, and Histopathological Alterations Induced by Ovalbumin in Asthmatic Mice by Modulating the Keap1/Nrf2 Signaling Pathway." Marine Drugs 21, no. 8 (2023): 455. http://dx.doi.org/10.3390/md21080455.
Full textWu, Shouquan, Xiaojuan Ding, Qianlan Yang, Minggui Wang, and Jian-Qing He. "Association of Three SNPs Loci of Kelch-Like-ECH-Associated Protein 1 (Human) with Tuberculosis in Chinese Han Population." International Journal of General Medicine Volume 15 (August 2022): 6365–72. http://dx.doi.org/10.2147/ijgm.s373555.
Full textHousand, Conrad, Nil Roy, Tine Wyseure, et al. "Abstract C126: Translational pharmacokinetic/pharmacodynamic (PK/PD) modeling of novel covalent Kelch-like ECH-associated protein 1 (KEAP1) activators." Molecular Cancer Therapeutics 22, no. 12_Supplement (2023): C126. http://dx.doi.org/10.1158/1535-7163.targ-23-c126.
Full textZhong, Mengqi, Andrew Lynch, Samantha N. Muellers, et al. "Interaction Energetics and Druggability of the Protein–Protein Interaction between Kelch-like ECH-Associated Protein 1 (KEAP1) and Nuclear Factor Erythroid 2 Like 2 (Nrf2)." Biochemistry 59, no. 4 (2019): 563–81. http://dx.doi.org/10.1021/acs.biochem.9b00943.
Full textShilovsky, Gregory A., and Daria V. Dibrova. "Regulation of Cell Proliferation and Nrf2-Mediated Antioxidant Defense: Conservation of Keap1 Cysteines and Nrf2 Binding Site in the Context of the Evolution of KLHL Family." Life 13, no. 4 (2023): 1045. http://dx.doi.org/10.3390/life13041045.
Full textLiu, Xiu-Fen, Dan-Dan Zhou, Tian Xie, et al. "Nrf2, a Potential Therapeutic Target against Oxidative Stress in Corneal Diseases." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2326178.
Full textChen, Ming, Jing Luo, Hongwu Ji, et al. "The Preventive Mechanism of Anserine on Tert-Butyl Hydroperoxide-Induced Liver Injury in L-02 Cells via Regulating the Keap1-Nrf2 and JNK-Caspase-3 Signaling Pathways." Marine Drugs 21, no. 9 (2023): 477. http://dx.doi.org/10.3390/md21090477.
Full textLiu, Chang, Yaohui Zhu, Zhenxiang Lu та ін. "Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway". International Journal of Environmental Research and Public Health 17, № 1 (2019): 138. http://dx.doi.org/10.3390/ijerph17010138.
Full textLeinonen, Hanna M., Emilia Kansanen, Petri Pölönen, Merja Heinäniemi, and Anna-Liisa Levonen. "Dysregulation of the Keap1–Nrf2 pathway in cancer." Biochemical Society Transactions 43, no. 4 (2015): 645–49. http://dx.doi.org/10.1042/bst20150048.
Full textCheng, Yao, Tsz Tin Yu, Ellen M. Olzomer, et al. "Design, Synthesis, and Biological Evaluation of Naphthoquinone Salts as Anticancer Agents." Molecules 30, no. 9 (2025): 1938. https://doi.org/10.3390/molecules30091938.
Full textTian, Wang, Montserrat Rojo de la Vega, Cody J. Schmidlin, Aikseng Ooi, and Donna D. Zhang. "Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2–related factors 1 and 2 (NRF1 and NRF2)." Journal of Biological Chemistry 293, no. 6 (2017): 2029–40. http://dx.doi.org/10.1074/jbc.ra117.000428.
Full textXu, Iris Ming-Jing, Robin Kit-Ho Lai, Shu-Hai Lin, et al. "Transketolase counteracts oxidative stress to drive cancer development." Proceedings of the National Academy of Sciences 113, no. 6 (2016): E725—E734. http://dx.doi.org/10.1073/pnas.1508779113.
Full textRichardson, Benjamin G., Atul D. Jain, Haranatha R. Potteti, et al. "Replacement of a Naphthalene Scaffold in Kelch-like ECH-Associated Protein 1 (KEAP1)/Nuclear Factor (Erythroid-derived 2)-like 2 (NRF2) Inhibitors." Journal of Medicinal Chemistry 61, no. 17 (2018): 8029–47. http://dx.doi.org/10.1021/acs.jmedchem.8b01133.
Full textAlves, Renata, Camila Liyoko Suehiro, Flavia Garcia de Oliveira, et al. "Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption." Journal of Applied Physiology 128, no. 1 (2020): 59–69. http://dx.doi.org/10.1152/japplphysiol.00201.2019.
Full textNettleton, Margaret, Luis E. Almeida, Sayuri Kamimura, Richard G. Lee, Gene Hung, and Zena Quezado. "Antisense Oligonucleotide Against Kelch-like Ech-Associated protein1 Ameliorates Liver Injury in Sickle Cell Mice." Blood 128, no. 22 (2016): 1294. http://dx.doi.org/10.1182/blood.v128.22.1294.1294.
Full textZhou, Shipeng, Qiuhua Tan, Bingjian Wen, et al. "Galacto-Oligosaccharide Alleviates Alcohol-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation." Metabolites 12, no. 9 (2022): 867. http://dx.doi.org/10.3390/metabo12090867.
Full textLuo, Ying, Wei Zhang, Liang Xu, Yajun Chen, Yao Xu, and Lin Yuan. "Long Non-Coding RNA PVT1 Regulates the Resistance of the Breast Cancer Cell Line MDA-MB-231 to Doxorubicin via Nrf2." Technology in Cancer Research & Treatment 19 (January 1, 2020): 153303382098076. http://dx.doi.org/10.1177/1533033820980763.
Full textKarunatilleke, Nadun C., Courtney S. Fast, Vy Ngo, et al. "Nrf2, the Major Regulator of the Cellular Oxidative Stress Response, is Partially Disordered." International Journal of Molecular Sciences 22, no. 14 (2021): 7434. http://dx.doi.org/10.3390/ijms22147434.
Full textGuon, Tae Eun, and Ha Sook Chung. "[10]-Gingerol from Zingiber Officinale Reduces Oxidative Stress via the ERK/Nrf2/HO-1 Signaling Pathway in Human Keratinocytes." Korean Tea Society 28, no. 2 (2022): 59–67. http://dx.doi.org/10.29225/jkts.2022.28.2.59.
Full textSingh, Seema, Abdulsalam, and Tahseen Raza. "A critique on cell signallings involve in colorectal cancer." Indian Journal of Clinical Anatomy and Physiology 9, no. 3 (2022): 161–65. http://dx.doi.org/10.18231/j.ijcap.2022.035.
Full textWang, Xin-Qin, Rong-Ping Liu, Jing Wang, et al. "Wedelolactone facilitates the early development of parthenogenetically activated porcine embryos by reducing oxidative stress and inhibiting autophagy." PeerJ 10 (July 25, 2022): e13766. http://dx.doi.org/10.7717/peerj.13766.
Full textLin, Chiao-Yun, Chen-Bin Chang, Ren-Chin Wu, et al. "Glucose Activates Lysine-Specific Demethylase 1 through the KEAP1/p62 Pathway." Antioxidants 10, no. 12 (2021): 1898. http://dx.doi.org/10.3390/antiox10121898.
Full textLiu, Hongcheng, Tong Sun, He Gao, et al. "Bioinformatics-Assisted Discovery of Antioxidant Cyclic Peptides from Corn Gluten Meal." Foods 14, no. 10 (2025): 1709. https://doi.org/10.3390/foods14101709.
Full textZhang, Ping, Anju Singh, Srinivasan Yegnasubramanian, et al. "Loss of Kelch-Like ECH-Associated Protein 1 Function in Prostate Cancer Cells Causes Chemoresistance and Radioresistance and Promotes Tumor Growth." Molecular Cancer Therapeutics 9, no. 2 (2010): 336–46. http://dx.doi.org/10.1158/1535-7163.mct-09-0589.
Full text