Academic literature on the topic 'Kelvin force probe microscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kelvin force probe microscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kelvin force probe microscopy"
Nonnenmacher, M., M. P. O’Boyle, and H. K. Wickramasinghe. "Kelvin probe force microscopy." Applied Physics Letters 58, no. 25 (June 24, 1991): 2921–23. http://dx.doi.org/10.1063/1.105227.
Full textJakob, Devon S., Haomin Wang, and Xiaoji G. Xu. "Pulsed Force Kelvin Probe Force Microscopy." ACS Nano 14, no. 4 (April 13, 2020): 4839–48. http://dx.doi.org/10.1021/acsnano.0c00767.
Full textBlücher, D. Bengtsson, J. E. Svensson, L. G. Johansson, M. Rohwerder, and M. Stratmann. "Scanning Kelvin Probe Force Microscopy." Journal of The Electrochemical Society 151, no. 12 (2004): B621. http://dx.doi.org/10.1149/1.1809590.
Full textJakob, Devon S., Haomin Wang, Guanghong Zeng, Daniel E. Otzen, Yong Yan, and Xiaoji G. Xu. "Peak Force Infrared–Kelvin Probe Force Microscopy." Angewandte Chemie International Edition 59, no. 37 (June 25, 2020): 16083–90. http://dx.doi.org/10.1002/anie.202004211.
Full textJakob, Devon S., Haomin Wang, Guanghong Zeng, Daniel E. Otzen, Yong Yan, and Xiaoji G. Xu. "Peak Force Infrared–Kelvin Probe Force Microscopy." Angewandte Chemie 132, no. 37 (June 25, 2020): 16217–24. http://dx.doi.org/10.1002/ange.202004211.
Full textKohl, Dominik, Patrick Mesquida, and Georg Schitter. "Quantitative AC - Kelvin Probe Force Microscopy." Microelectronic Engineering 176 (May 2017): 28–32. http://dx.doi.org/10.1016/j.mee.2017.01.005.
Full textMIZUTANI, Takashi. "Expectation on Kelvin Probe Force Microscopy." Hyomen Kagaku 22, no. 5 (2001): 281. http://dx.doi.org/10.1380/jsssj.22.281.
Full textCollins, Liam, Stephen Jesse, Jason I. Kilpatrick, Alexander Tselev, M. Baris Okatan, Sergei V. Kalinin, and Brian J. Rodriguez. "Kelvin probe force microscopy in liquid using electrochemical force microscopy." Beilstein Journal of Nanotechnology 6 (January 19, 2015): 201–14. http://dx.doi.org/10.3762/bjnano.6.19.
Full textLigowski, Maciej, Michiharu Tabe, and Ryszard Jabłoński. "Kelvin Probe Force Microscope Measurement Uncertainty." Advanced Materials Research 222 (April 2011): 114–17. http://dx.doi.org/10.4028/www.scientific.net/amr.222.114.
Full textKline, R. J., J. F. Richards, and P. E. Russell. "Scanning Kelvin Force and Capacitance Microscopy Applications." Microscopy and Microanalysis 4, S2 (July 1998): 330–31. http://dx.doi.org/10.1017/s1431927600021772.
Full textDissertations / Theses on the topic "Kelvin force probe microscopy"
Ye, Sheng. "Kelvin Probe Force Microscopy (KPFM) for nanoelectronic device characterisation." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/419059/.
Full textMurawski, Jan. "Time-Resolved Kelvin Probe Force Microscopy of Nanostructured Devices." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-224810.
Full textMilde, Peter. "Visualisation of Local Charge Densities with Kelvin Probe Force Microscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-70867.
Full textRuiz, Ortega Leonardo Ibor. "Micropatterns for surface potential mapping of biomolecules by Kelvin probe force microscopy." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/micropatterns-for-surface-potential-mapping-of-biomolecules-by-kelvin-probe-force-microscopy(2a7d9300-f575-4786-b9a3-600e807cd66c).html.
Full textBostanci, Umut. "Development Of Atomic Force Microscopy System And Kelvin Probe Microscopy System For Use In Semiconductor Nanocrystal Characterization." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608812/index.pdf.
Full textBaumgart, Christine. "Quantitative dopant profiling in semiconductors: A new approach to Kelvin probe force microscopy." Forschungszentrum Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-97372.
Full textFratelli, Ilaria. "Flexible oxide thin film transistors: device fabrication and kelvin probe force microscopy analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13538/.
Full textBaumgart, Christine. "Quantitative dopant profiling in semiconductors: A new approach to Kelvin probe force microscopy." Helmholtz-Zentrum Dresden-Rossendorf, 2012. https://hzdr.qucosa.de/id/qucosa%3A22160.
Full textNarvaez, Gonzalez Angela Carolina. "Nanofios semicondutores : análise de propriedades elétricas e estruturais por microscopia no modo Kelvin Probe." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278455.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-11T21:43:56Z (GMT). No. of bitstreams: 1 NarvaezGonzalez_AngelaCarolina_M.pdf: 14145813 bytes, checksum: 31ac8f1ebde240684c9bbe88b9c9b7a7 (MD5) Previous issue date: 2008
Resumo: As propriedades elétricas de nanofios (InAs, InP, InP-InAs-InP, InAsP) individuais e em junções foram estudadas implementando simultaneamente as técnicas Non Contact Atomic Force Microscopy NC-AFM (para aquisição da topografia) e Amplitude-sensitive Modulated Kelvin Probe Microscopy AM-KPFM (fornece medidas do Potencial de Superfície), permitindo correlacionar as propriedades elétricas com a estrutura da amostra. Em particular, o comportamento do Potencial de Superfície (PS) em função do diâmetro do nanofio foi investigado e utilizado na identificação do material que o compõe. Em uma primeira etapa, a técnica AM-KPFM foi caracterizada, principalmente em termos de resolução para análise de nano-objetos. Nossos resultados evidenciaram um fator de escala presente associado à eletrônica do equipamento, que somente permitiu realizar uma análise qualitativa dos dados adquiridos. Além disso, foi observada uma diminuição no contraste nas medidas elétricas quando o tamanho do objeto analisado diminui. Medidas em nanofios individuais de InP e InAs permitiram estabelecer que há uma queda no PS quando o diâmetro do fio diminui. Este comportamento é o resultado de duas contribuições: a perda no contraste (efeito de tamanho na medida) e o incremento local da função trabalho, que poderíamos associar ao aumento da proporção entre a carga superficial e a carga no interior do fio. Nas junções, há um aumento no PS na região da junção, indicando a formação de uma barreira de energia associada à acumulção de carga. Isto isola as junções do comportamento típico observado em nanofios individuais. Medidas em junções montadas em dispositivos poderiam complementar o estudo deste tipo de configurações. A caracterização do PS em função do diâmetro para os nanofios de InP e InAs permitiu a identificação do material (InAs ou InP) presente ao longo dos fios heteroestruturados de InP-InAs-InP, mostrando também a presença da nanopartícula de ouro usada como catalisador no crescimento. Os contrastes no PS ao longo do fio não se correlacionam diretamente às imagens de Microscopia Eletrônica de Transmissão, sugerindo que a interface elétrica é diferente da metalúrgica. Nos nanofios de InAsP, pelo contrário, os dados obtidos indicam a formação de uma liga ternária
Abstract: The electric properties of InAs, InP, InP-InAs-InP and InAsP nanowires (NWs) -assembled both individually and in junctions - were studied by simultaneous imple-mentation of Non Contact Atomic Force Microscopy NC-AFM (for topography) and Amplitude-sensitive Modulated Kelvin Probe Microscopy AM-KPFM (for Surface Potential distribution), obtaining spatially resolved electrical measurements of the sample structure. In particular, the SP vs NW diameter behavior was investigated and used to identify the material composing the nanowires. In a first approach, AM-KPFM was characterized mainly in terms of resolution for the analysis of the nano-objects. Our results suggest there is a scale factor on our measurements associated to the equipment electronics, that limited our discussion to a qualitative interpretation of the acquired data. Also, a contrast decrease on SP measurements was observed when the size of the object is reduced, comparatively to the tip. The experimental results on individual InAs and InP nanowires showed a SP saturation level (SPsat) below which SP drops with the NW diameter. This behavior came from at least two contributions: a loss of SP contrast due to object/tip size effects and a local increment on work function, that we associate to the larger surface/volume ratio close to the NW tip which makes the material more intrinsic. For NWs on junctions, a larger SP value is correlated to the regions where the junction is formed, possibly due to charge accumulation. Measurements of junctions assembled on devices could complement the study of this kind of structures. The SP vs diameter characterization of InAs and InP nanowires also allowed the identification of the material along the heterostructured InP-InAs-InP nanowire, showing the presence of the Au nanoparticle used to catalyze the growth. The SP image is not directly correlated with HR-TEM images, suggesting that electric and metallurgic interfaces are not the same. For InAsP nanowires, the acquired data indicate the formation of an homogeneous ternary alloy
Mestrado
Física da Matéria Condensada
Mestre em Física
Romero, Lairado Francisco [Verfasser]. "Preparation and interpretation of Kelvin probe force microscopy experiments on bulk insulators / Francisco Romero Lairado." Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1168757908/34.
Full textBooks on the topic "Kelvin force probe microscopy"
Sadewasser, Sascha, and Thilo Glatzel, eds. Kelvin Probe Force Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22566-6.
Full textSadewasser, Sascha, and Thilo Glatzel, eds. Kelvin Probe Force Microscopy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75687-5.
Full textP, Moody Michael, Cairney Julie M, Ringer Simon P, and SpringerLink (Online service), eds. Atom Probe Microscopy. New York, NY: Springer New York, 2012.
Find full textHaugstad, Greg. Atomic force microscopy: Exploring basic modes and advanced applications. Hoboken, N.J: John Wiley & Sons, 2012.
Find full textInternational Conference on Scanning Probe Microscopy in Biomaterials Science (2nd 2000 Bristol, England). SPM Biomaterials 2000: Proceedings of the 2nd International Conference on Scanning Probe Microscopy in Biomaterials Science, Bristol, United Kingdom, 23 June 2000. Edited by Jandt Klaus D and Marchant Roger E. Amsterdam, The Netherlands: Elsevier, 2001.
Find full textSadewasser, Sascha, and Thilo Glatzel. Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces. Springer, 2013.
Find full textKelvin Probe Force Microscopy Measuring And Compensating Electrostatic Forces. Springer, 2011.
Find full textSadewasser, Sascha, and Thilo Glatzel. Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization. Springer, 2018.
Find full textBook chapters on the topic "Kelvin force probe microscopy"
Bhushan, Bharat, and Manuel L. B. Palacio. "Kelvin Probe Force Microscopy." In Encyclopedia of Nanotechnology, 1173–79. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_150.
Full textLi, Yan Jun, Haunfei Wen, Zong Min Ma, Lili Kou, Yoshitaka Naitoh, and Yasuhiro Sugawara. "Kelvin Probe Force Microscopy with." In Kelvin Probe Force Microscopy, 437–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75687-5_14.
Full textSadewasser, S., and Th Glatzel. "Introduction." In Kelvin Probe Force Microscopy, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_1.
Full textOnishi, H., and A. Sasahara. "Local Work Function of Catalysts and Photoelectrodes." In Kelvin Probe Force Microscopy, 201–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_10.
Full textLoppacher, Christian. "Electronic Properties of Metal/Organic Interfaces." In Kelvin Probe Force Microscopy, 221–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_11.
Full textRodriguez, B. J., and S. V. Kalinin. "KPFM and PFM of Biological Systems." In Kelvin Probe Force Microscopy, 243–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_12.
Full textGlatzel, Th. "Measuring Atomic-Scale Variations of the Electrostatic Force." In Kelvin Probe Force Microscopy, 289–327. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_13.
Full textSadewasser, S. "Experimental Technique and Working Modes." In Kelvin Probe Force Microscopy, 7–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_2.
Full textDiesinger, H., D. Deresmes, and T. Mélin. "Capacitive Crosstalk in AM-Mode KPFM." In Kelvin Probe Force Microscopy, 25–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_3.
Full textRosenwaks, Y., G. Elias, E. Strassbourg, A. Schwarzman, and A. Boag. "The Effect of the Measuring Tip and Image Reconstruction." In Kelvin Probe Force Microscopy, 45–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22566-6_4.
Full textConference papers on the topic "Kelvin force probe microscopy"
Machleidt, Torsten, Erik Sparrer, Tim Kubertschak, Rico Nestler, and Karl-Heinz Franke. "Kelvin probe force microscopy: measurement data reconstruction." In SPIE Scanning Microscopy, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2009. http://dx.doi.org/10.1117/12.821787.
Full textYan, Liang, Christian Punckt, Ilhan A. Aksay, Wolfgang Mertin, Gerd Bacher, Jisoon Ihm, and Hyeonsik Cheong. "Potential Distribution in Functionalized Graphene Devices Probed by Kelvin Probe Force Microscopy." In PHYSICS OF SEMICONDUCTORS: 30th International Conference on the Physics of Semiconductors. AIP, 2011. http://dx.doi.org/10.1063/1.3666628.
Full textIkeda, Hiroya, Kazutoshi Miwa, and Faiz Salleh. "Construction of Seebeck-coefficient measurement by Kelvin-probe force microscopy." In 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011. AIP, 2012. http://dx.doi.org/10.1063/1.4731575.
Full textHurst, Jeffrey, Kin-Sang Lam, Clint Bordelon, Michael Wilson, Brian Smith, and Shane Phillips. "Kelvin probe force microscopy of gate stack metal alloy films." In 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2017. http://dx.doi.org/10.1109/asmc.2017.7969246.
Full textHurst, Jeffrey, Kin-Sang Lam, Clint Bordelon, Michael Wilson, Brian Smith, and Shane Phillips. "Kelvin probe force microscopy of gate stack metal alloy films." In 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE, 2017. http://dx.doi.org/10.23919/mipro.2017.7966593.
Full textKodera, M., Y. Yoshimizu, and K. Uchida. "Potential Characterization of Interconnect Corrosion by Kelvin Probe Force Microscopy." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.c-9-2.
Full textMcNamara, J. D., A. J. Duncan, M. J. Morgan, and P. S. Korinko. "Imaging Hydrogen in Stainless Steel Alloys by Kelvin Probe Force Microscopy." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84755.
Full textZhang, Hao, Danish Hussain, Xianghe Meng, Jianmin Song, and Hui Xie. "Measurement of surface potential and adhesion with Kelvin Probe Force Microscopy." In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2016. http://dx.doi.org/10.1109/marss.2016.7561734.
Full textROCHE, R., A. L. LEREU, and Ph DUMAS. "PREDICTABLE BEHAVIOR OF ORGANIC PHOTOVOLTAIC CELLS BY KELVIN PROBE FORCE MICROSCOPY." In Proceedings of International Conference Nanomeeting – 2013. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814460187_0118.
Full textMortreuil, F., C. Villeneuve-Faure, L. Boudou, K. Makasheva, and G. Teyssedre. "Charges injection investigation at metal/dielectric interfaces by Kelvin Probe Force Microscopy." In 2016 IEEE International Conference on Dielectrics (ICD). IEEE, 2016. http://dx.doi.org/10.1109/icd.2016.7547650.
Full textReports on the topic "Kelvin force probe microscopy"
Behunin, R., Diego A. Dalvit, R. Decca, C. Genet, I. Jung, A. Lambrecht, A. Liscio, et al. Kelvin probe force microscopy of metallic surfaces used in Casimir force measurements. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1136960.
Full textDuncan, Andrew, Joy McNamara, Michael Morgan, and Paul Korinko. Kelvin probe force microscopy for high-resolution imaging of hydrogen in steel alloys [Poster]. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475273.
Full textMcNamara, J. KELVIN PROBE FORCE MICROSCOPY FOR HIGH-RESOLUTION IMAGING OF HYDROGEN IN STEEL AND ALUMINUM ALLOYS. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572885.
Full textSolares, Santiago D. Trimodal Tapping Mode Atomic Force Microscopy. Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1215400.
Full textSolares, Santiago D. Final Technical Report for Award DESC0011912, "Trimodal Tapping Mode Atomic Force Microscopy: Simultaneous 4D Mapping of Conservative and Dissipative Probe-Sample Interactions of Energy-Relevant Materials”. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1393854.
Full text