To see the other types of publications on this topic, follow the link: Kernel estimates.

Journal articles on the topic 'Kernel estimates'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Kernel estimates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jones, M. C. "VARIABLE KERNEL DENSITY ESTIMATES AND VARIABLE KERNEL DENSITY ESTIMATES." Australian Journal of Statistics 32, no. 3 (1990): 361–71. http://dx.doi.org/10.1111/j.1467-842x.1990.tb01031.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qian, Zhongmin. "Gradient estimates and heat kernel estimates." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 125, no. 5 (1995): 975–90. http://dx.doi.org/10.1017/s0308210500022599.

Full text
Abstract:
In the first part of this paper, Yau's estimates for positive L-harmonic functions and Li and Yau's gradient estimates for the positive solutions of a general parabolic heat equation on a complete Riemannian manifold are obtained by the use of Bakry and Emery's theory. In the second part we establish a heat kernel bound for a second-order differential operator which has a bounded and measurable drift, using Girsanov's formula.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jiaping. "Global heat kernel estimates." Pacific Journal of Mathematics 178, no. 2 (1997): 377–98. http://dx.doi.org/10.2140/pjm.1997.178.377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Van Kerm, Philippe. "Adaptive Kernel Density Estimation." Stata Journal: Promoting communications on statistics and Stata 3, no. 2 (2003): 148–56. http://dx.doi.org/10.1177/1536867x0300300204.

Full text
Abstract:
This insert describes the module akdensity. akdensity extends the official kdensity that estimates density functions by the kernel method. The extensions are of two types: akdensity allows the use of an “adaptive kernel” approach with varying, rather than fixed, bandwidths; and akdensity estimates pointwise variability bands around the estimated density functions.
APA, Harvard, Vancouver, ISO, and other styles
5

Staniswalis, Joan G., and Vanessa Cooper. "Kernel Estimates of Dose Response." Biometrics 44, no. 4 (1988): 1103. http://dx.doi.org/10.2307/2531739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brown, Philip J., and Peter W. K. Rundell. "Kernel Estimates for Categorical Data." Technometrics 27, no. 3 (1985): 293–99. http://dx.doi.org/10.1080/00401706.1985.10488054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghosh, Anil K., Probal Chaudhuri, and Debasis Sengupta. "Classification Using Kernel Density Estimates." Technometrics 48, no. 1 (2006): 120–32. http://dx.doi.org/10.1198/004017005000000391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Franke, J., and W. Hardle. "On Bootstrapping Kernel Spectral Estimates." Annals of Statistics 20, no. 1 (1992): 121–45. http://dx.doi.org/10.1214/aos/1176348515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SAMIUDDIN, M., and G. M. EL-SAYYAD. "On nonparametric kernel density estimates." Biometrika 77, no. 4 (1990): 865–74. http://dx.doi.org/10.1093/biomet/77.4.865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Metafune, G., D. Pallara, and A. Rhandi. "Kernel estimates for Schrödinger operators." Journal of Evolution Equations 6, no. 3 (2006): 433–57. http://dx.doi.org/10.1007/s00028-006-0259-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Małecki, Jacek, Grzegorz Serafin, and Tomasz Zorawik. "Fourier–Bessel heat kernel estimates." Journal of Mathematical Analysis and Applications 439, no. 1 (2016): 91–102. http://dx.doi.org/10.1016/j.jmaa.2016.02.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

ALBANESE, CLAUDIO. "KERNEL CONVERGENCE ESTIMATES FOR DIFFUSIONS WITH CONTINUOUS COEFFICIENTS." International Journal of Theoretical and Applied Finance 14, no. 07 (2011): 979–1004. http://dx.doi.org/10.1142/s0219024911006619.

Full text
Abstract:
Bidirectional valuation models are based on numerical methods to obtain kernels of parabolic equations. Here we address the problem of robustness of kernel calculations vis a vis floating point errors from a theoretical standpoint. We are interested in kernels of one-dimensional diffusion equations with continuous coefficients as evaluated by means of explicit discretization schemes of uniform step h > 0 in the limit as h → 0. We consider both semidiscrete triangulations with continuous time and explicit Euler schemes with time step so small that the Courant condition is satisfied. We find
APA, Harvard, Vancouver, ISO, and other styles
13

Meyers, N. M., D. O. Huett, S. C. Morris, L. M. McFadyen, and C. A. McConchie. "Investigation of sampling procedures to determine macadamia fruit quality in orchards." Australian Journal of Experimental Agriculture 39, no. 8 (1999): 1007. http://dx.doi.org/10.1071/ea99072.

Full text
Abstract:
Summary. Macadamia kernel quality estimates are of fundamental importance to understanding tree responses to many experimental treatments and orchard management protocols. Experimental measures of macadamia kernel quality, collected under field conditions, traditionally rely on the average of 100 fruit, sampled from the estimated peak in fruit drop. To detect changes in kernel quality over a single season, we measured variation in fruit quality of macadamia cv. 344. To sample this variation we measured 10 fruit from 6 blocks of 3 trees at each of 7 sites, over 4 harvests made at monthly interv
APA, Harvard, Vancouver, ISO, and other styles
14

Dungey, Nick. "On Gaussian kernel estimates on groups." Colloquium Mathematicum 100, no. 1 (2004): 77–90. http://dx.doi.org/10.4064/cm100-1-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bernicot, Frédéric, Thierry Coulhon, and Dorothee Frey. "Sobolev algebras through heat kernel estimates." Journal de l’École polytechnique — Mathématiques 3 (2016): 99–161. http://dx.doi.org/10.5802/jep.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Priebe, Carey E., and David J. Marchette. "Alternating kernel and mixture density estimates." Computational Statistics & Data Analysis 35, no. 1 (2000): 43–65. http://dx.doi.org/10.1016/s0167-9473(00)00003-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

YANG, Meng. "Heat kernel estimates on Julia sets." Acta Mathematica Scientia 37, no. 5 (2017): 1399–414. http://dx.doi.org/10.1016/s0252-9602(17)30081-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Staniswalis, Joan G. "Local Bandwidth Selection for Kernel Estimates." Journal of the American Statistical Association 84, no. 405 (1989): 284–88. http://dx.doi.org/10.1080/01621459.1989.10478767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jones, M. C. "Discretized and Interpolated Kernel Density Estimates." Journal of the American Statistical Association 84, no. 407 (1989): 733–41. http://dx.doi.org/10.1080/01621459.1989.10478827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Murugan, Mathav. "Quasisymmetric uniformization and heat kernel estimates." Transactions of the American Mathematical Society 372, no. 6 (2019): 4177–209. http://dx.doi.org/10.1090/tran/7713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Metzger, Bernd, and Peter Stollmann. "Heat Kernel Estimates on Weighted Graphs." Bulletin of the London Mathematical Society 32, no. 4 (2000): 477–83. http://dx.doi.org/10.1112/s0024609300007153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kunze, Markus, Luca Lorenzi, and Abdelaziz Rhandi. "Kernel estimates for nonautonomous Kolmogorov equations." Advances in Mathematics 287 (January 2016): 600–639. http://dx.doi.org/10.1016/j.aim.2015.09.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Parente, Jacquelyn Dawn, J. Geoffrey Chase, Knut Möller, and Geoffrey M. Shaw. "Kernel density estimates for sepsis classification." Computer Methods and Programs in Biomedicine 188 (May 2020): 105295. http://dx.doi.org/10.1016/j.cmpb.2019.105295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Al-Qassem, Hussain, Leslie Cheng, and Yibiao Pan. "Endpoint Estimates for Oscillatory Singular Integrals with Hölder Class Kernels." Journal of Function Spaces 2019 (January 16, 2019): 1–7. http://dx.doi.org/10.1155/2019/8561402.

Full text
Abstract:
We prove the uniform L1→L1,∞ and HE1→L1 boundedness of oscillatory singular integral operators whose kernels are the products of an oscillatory factor with bilinear phase and a Calderón-Zygmund kernel K(x,y) satisfying a Hölder condition. This Hölder condition appreciably weakens the C1 condition imposed in existing literature.
APA, Harvard, Vancouver, ISO, and other styles
25

Ding, Yong, and Shanzhen Lu. "Hardy spaces estimates for multilinear operators with homogeneous kernels." Nagoya Mathematical Journal 170 (2003): 117–33. http://dx.doi.org/10.1017/s0027763000008552.

Full text
Abstract:
AbstractIn this paper the authors prove that a class of multilinear operators formed by the singular integral or fractional integral operators with homogeneous kernels are bounded operators from the product spaces Lp1 × Lp2 × · · · × LpK (ℝn) to the Hardy spaces Hq (ℝn) and the weak Hardy space Hq,∞(ℝn), where the kernel functions Ωij satisfy only the Ls-Dini conditions. As an application of this result, we obtain the (Lp, Lq) boundedness for a class of commutator of the fractional integral with homogeneous kernels and BMO function.
APA, Harvard, Vancouver, ISO, and other styles
26

Prazenica, Richard J., and Andrew J. Kurdila. "Volterra Kernel Identification Using Triangular Wavelets." Journal of Vibration and Control 10, no. 4 (2004): 597–622. http://dx.doi.org/10.1177/1077546304038269.

Full text
Abstract:
The Nblterra series provides a convenient framework for the representation of nonlinear dynamical systems. One of the main drawbacks of this approach, however, is the large number of terns that are often needed to represent Wblterra kernels. In this paper we present an approach whereby wavelets are used to obtain low-order estimates of first-order and second-order blterra kernels. Several constructions of tensorproduct wavelets have been employed for some%blterra kernel approximations. In this paper, a triangular wavelet basis is constructed for the representation of the triangular fonn of the
APA, Harvard, Vancouver, ISO, and other styles
27

Maity, Arnab, and Debapriya Sengupta. "A Perturbation Technique for Sample Moment Matching in Kernel Density Estimation." Calcutta Statistical Association Bulletin 56, no. 1-4 (2005): 161–88. http://dx.doi.org/10.1177/0008068320050510.

Full text
Abstract:
Summary The fundamental idea of kernel smoothing technique can be recognized as one-parameter data perturbation with a smooth density. The usual kernel density estimates might not match arbitrary sample moments calculated from the unsmoothed data. A technique based on two-parameter data perturbation is developed for sample moment matching in kernel density estimation. It is shown that the moments calculated from the resulting tuned kernel density estimate can be made arbitrarily close to the raw sample moments. Moreover, the pointwise rate of MISE of the resulting density estimates remains opt
APA, Harvard, Vancouver, ISO, and other styles
28

Li, Liangpan, and Alexander Strohmaier. "Heat kernel estimates for general boundary problems." Journal of Spectral Theory 6, no. 4 (2016): 903–19. http://dx.doi.org/10.4171/jst/147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jorgensen, Palle, and Myung-Sin Song. "Reproducing Kernel Hilbert Space vs. Frame Estimates." Mathematics 3, no. 3 (2015): 615–25. http://dx.doi.org/10.3390/math3030615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nowak, Adam, and Peter Sjögren. "Sharp estimates of the Jacobi heat kernel." Studia Mathematica 218, no. 3 (2013): 219–44. http://dx.doi.org/10.4064/sm218-3-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Phillips, Jeff M., and Wai Ming Tai. "Near-Optimal Coresets of Kernel Density Estimates." Discrete & Computational Geometry 63, no. 4 (2019): 867–87. http://dx.doi.org/10.1007/s00454-019-00134-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chen, Zhen-Qing, Panki Kim, Takashi Kumagai, and Jian Wang. "Heat kernel estimates for time fractional equations." Forum Mathematicum 30, no. 5 (2018): 1163–92. http://dx.doi.org/10.1515/forum-2017-0192.

Full text
Abstract:
AbstractIn this paper, we establish existence and uniqueness of weak solutions to general time fractional equations and give their probabilistic representations. We then derive sharp two-sided estimates for fundamental solutions of a family of time fractional equations in metric measure spaces.
APA, Harvard, Vancouver, ISO, and other styles
33

Nowak, Adam, Peter Sjögren, and Tomasz Z. Szarek. "Sharp estimates of the spherical heat kernel." Journal de Mathématiques Pures et Appliquées 129 (September 2019): 23–33. http://dx.doi.org/10.1016/j.matpur.2018.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Müller, Hans-Georg, and Thomas Schmitt. "Kernel and Probit Estimates in Quantal Bioassay." Journal of the American Statistical Association 83, no. 403 (1988): 750–59. http://dx.doi.org/10.1080/01621459.1988.10478658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cho, Hong Rae, and Soohyun Park. "BERGMAN KERNEL ESTIMATES FOR GENERALIZED FOCK SPACES." East Asian mathematical journal 33, no. 1 (2017): 37–44. http://dx.doi.org/10.7858/eamj.2017.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Muller, Hans-Georg, and Thomas Schmitt. "Kernel and Probit Estimates in Quantal Bioassay." Journal of the American Statistical Association 83, no. 403 (1988): 750. http://dx.doi.org/10.2307/2289301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mimica, Ante. "Heat kernel estimates for subordinate Brownian motions." Proceedings of the London Mathematical Society 113, no. 5 (2016): 627–48. http://dx.doi.org/10.1112/plms/pdw043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Seifert, Christian. "Kernel estimates for perturbations of positive semigroups." PAMM 14, no. 1 (2014): 1007–8. http://dx.doi.org/10.1002/pamm.201410483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Taylor, Charles C., Kanti V. Mardia, Marco Di Marzio, and Agnese Panzera. "Validating protein structure using kernel density estimates." Journal of Applied Statistics 39, no. 11 (2012): 2379–88. http://dx.doi.org/10.1080/02664763.2012.710898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Roussas, George G. "Kernel estimates under association: strong uniform consistency." Statistics & Probability Letters 12, no. 5 (1991): 393–403. http://dx.doi.org/10.1016/0167-7152(91)90028-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Davies, Tilman M., and Adrian Baddeley. "Fast computation of spatially adaptive kernel estimates." Statistics and Computing 28, no. 4 (2017): 937–56. http://dx.doi.org/10.1007/s11222-017-9772-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kohler, Michael, Adam Krzyżak, and Harro Walk. "Strong consistency of automatic kernel regression estimates." Annals of the Institute of Statistical Mathematics 55, no. 2 (2003): 287–308. http://dx.doi.org/10.1007/bf02530500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ozabaci, Deniz, and Daniel J. Henderson. "Additive kernel estimates of returns to schooling." Empirical Economics 48, no. 1 (2014): 227–51. http://dx.doi.org/10.1007/s00181-014-0877-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

El-Fallah, O., Y. Elmadani, and K. Kellay. "Kernel and capacity estimates in Dirichlet spaces." Journal of Functional Analysis 276, no. 3 (2019): 867–95. http://dx.doi.org/10.1016/j.jfa.2018.03.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nualart, Eulalia. "Exponential divergence estimates and heat kernel tail." Comptes Rendus Mathematique 338, no. 1 (2004): 77–80. http://dx.doi.org/10.1016/j.crma.2003.11.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Baxter, M. J., C. C. Beardah, and R. V. S. Wright. "Some Archaeological Applications of Kernel Density Estimates." Journal of Archaeological Science 24, no. 4 (1997): 347–54. http://dx.doi.org/10.1006/jasc.1996.0119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abdous, Belkacem, and Alain Berlinet. "Pointwise Improvement of Multivariate Kernel Density Estimates." Journal of Multivariate Analysis 65, no. 2 (1998): 109–28. http://dx.doi.org/10.1006/jmva.1998.1742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Michener, P. M., J. K. Pataky, and D. G. White. "Transmission of Erwinia stewartii from Plants to Kernels and Reactions of Corn Hybrids to Stewart's Wilt." Plant Disease 86, no. 2 (2002): 167–72. http://dx.doi.org/10.1094/pdis.2002.86.2.167.

Full text
Abstract:
Stewart's wilt reactions of 98 food-grade, white corn hybrids, 3 yellow dent corn hybrids, and 23 sweet corn hybrids and infection of kernels by E. stewartii were evaluated in 1998, 1999, and 2000. Stewart's wilt symptoms were rated from 1 (no appreciable spread of symptoms) to 9 (dead plants) following inoculation. The mean Stewart's wilt ratings for the food-grade, white corn and yellow dent corn hybrids were 1.9, 2.4, and 2.9 in 1998, 1999, and 2000, respectively. The mean Stewart's wilt ratings for the sweet corn hybrids were 3.8, 4.2, and 4.6 in 1998, 1999, and 2000, respectively. Hybrids
APA, Harvard, Vancouver, ISO, and other styles
49

Varopoulos, N. Th. "Gaussian Estimates in Lipschitz Domains." Canadian Journal of Mathematics 55, no. 2 (2003): 401–31. http://dx.doi.org/10.4153/cjm-2003-018-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Khaki, Saeed, Hieu Pham, Ye Han, Andy Kuhl, Wade Kent, and Lizhi Wang. "Convolutional Neural Networks for Image-Based Corn Kernel Detection and Counting." Sensors 20, no. 9 (2020): 2721. http://dx.doi.org/10.3390/s20092721.

Full text
Abstract:
Precise in-season corn grain yield estimates enable farmers to make real-time accurate harvest and grain marketing decisions minimizing possible losses of profitability. A well developed corn ear can have up to 800 kernels, but manually counting the kernels on an ear of corn is labor-intensive, time consuming and prone to human error. From an algorithmic perspective, the detection of the kernels from a single corn ear image is challenging due to the large number of kernels at different angles and very small distance among the kernels. In this paper, we propose a kernel detection and counting m
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!