Academic literature on the topic 'Kernel Inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kernel Inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kernel Inference"
Nishiyama, Yu, Motonobu Kanagawa, Arthur Gretton, and Kenji Fukumizu. "Model-based kernel sum rule: kernel Bayesian inference with probabilistic models." Machine Learning 109, no. 5 (2020): 939–72. http://dx.doi.org/10.1007/s10994-019-05852-9.
Full textRogers, Mark F., Colin Campbell, and Yiming Ying. "Probabilistic Inference of Biological Networks via Data Integration." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/707453.
Full textLUGO-MARTINEZ, JOSE, and PREDRAG RADIVOJAC. "Generalized graphlet kernels for probabilistic inference in sparse graphs." Network Science 2, no. 2 (2014): 254–76. http://dx.doi.org/10.1017/nws.2014.14.
Full textLazarus, Eben, Daniel J. Lewis, and James H. Stock. "The Size‐Power Tradeoff in HAR Inference." Econometrica 89, no. 5 (2021): 2497–516. http://dx.doi.org/10.3982/ecta15404.
Full textBillio, M. "Kernel-Based Indirect Inference." Journal of Financial Econometrics 1, no. 3 (2003): 297–326. http://dx.doi.org/10.1093/jjfinec/nbg014.
Full textZhang, Li Lyna, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, and Yunxin Liu. "nn-METER." GetMobile: Mobile Computing and Communications 25, no. 4 (2022): 19–23. http://dx.doi.org/10.1145/3529706.3529712.
Full textRobinson, P. M. "INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS." Econometric Theory 25, no. 6 (2009): 1716–33. http://dx.doi.org/10.1017/s0266466609990302.
Full textYuan, Ao. "Semiparametric inference with kernel likelihood." Journal of Nonparametric Statistics 21, no. 2 (2009): 207–28. http://dx.doi.org/10.1080/10485250802553382.
Full textCheng, Yansong, and Surajit Ray. "Multivariate Modality Inference Using Gaussian Kernel." Open Journal of Statistics 04, no. 05 (2014): 419–34. http://dx.doi.org/10.4236/ojs.2014.45041.
Full textAgbokou, Komi, and Yaogan Mensah. "INFERENCE ON THE REPRODUCING KERNEL HILBERT SPACES." Universal Journal of Mathematics and Mathematical Sciences 15 (October 10, 2021): 11–29. http://dx.doi.org/10.17654/2277141722002.
Full textDissertations / Theses on the topic "Kernel Inference"
Fouchet, Arnaud. "Kernel methods for gene regulatory network inference." Thesis, Evry-Val d'Essonne, 2014. http://www.theses.fr/2014EVRY0058/document.
Full textChan, Karen Pui-Shan. "Kernel density estimation, Bayesian inference and random effects model." Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/13350.
Full textAraya, Valdivia Ernesto. "Kernel spectral learning and inference in random geometric graphs." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM020.
Full textJitkrittum, Wittawat. "Kernel-based distribution features for statistical tests and Bayesian inference." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/10037987/.
Full textHsu, Yuan-Shuo Kelvin. "Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24309.
Full textAdams, R. P. "Kernel methods for nonparametric Bayesian inference of probability densities and point processes." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595350.
Full textGogolashvili, Davit. "Global and local Kernel methods for dataset shift, scalable inference and optimization." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS363v2.pdf.
Full textMaity, Arnab. "Efficient inference in general semiparametric regression models." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3075.
Full textMinnier, Jessica. "Inference and Prediction for High Dimensional Data via Penalized Regression and Kernel Machine Methods." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10327.
Full textWeller, Jennifer N. "Bayesian Inference In Forecasting Volcanic Hazards: An Example From Armenia." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000485.
Full textBooks on the topic "Kernel Inference"
Fauzi, Rizky Reza, and Yoshihiko Maesono. Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1.
Full textSilva, Catarina. Inductive inference for large scale text classification: Kernel approaches and techniques. Springer, 2010.
Find full textFauzi, Rizky Reza, and Yoshihiko Maesono. Statistical Inference Based on Kernel Distribution Function Estimators. Springer, 2023.
Find full textSilva, Catarina, and Bernadete Ribeiro. Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques. Springer, 2012.
Find full textBook chapters on the topic "Kernel Inference"
Vovk, Vladimir. "Kernel Ridge Regression." In Empirical Inference. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_11.
Full textFauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Quantile Estimation." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_3.
Full textFauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Density Function Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_1.
Full textFauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel Distribution Function Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_2.
Full textFauzi, Rizky Reza, and Yoshihiko Maesono. "Kernel-Based Nonparametric Tests." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_5.
Full textSilva, Catarina, and Bernardete Ribeiro. "Kernel Machines for Text Classification." In Inductive Inference for Large Scale Text Classification. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04533-2_2.
Full textVert, Jean-Philippe. "Classification of Biological Sequences with Kernel Methods." In Grammatical Inference: Algorithms and Applications. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11872436_2.
Full textChristmann, Andreas, and Robert Hable. "On the Consistency of the Bootstrap Approach for Support Vector Machines and Related Kernel-Based Methods." In Empirical Inference. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41136-6_20.
Full textFukumizu, Kenji. "Nonparametric Bayesian Inference with Kernel Mean Embedding." In Modern Methodology and Applications in Spatial-Temporal Modeling. Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55339-7_1.
Full textFauzi, Rizky Reza, and Yoshihiko Maesono. "Mean Residual Life Estimator." In Statistical Inference Based on Kernel Distribution Function Estimators. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1862-1_4.
Full textConference papers on the topic "Kernel Inference"
Chen, Weiteng, Yu Hao, Zheng Zhang, et al. "SyzGen++: Dependency Inference for Augmenting Kernel Driver Fuzzing." In 2024 IEEE Symposium on Security and Privacy (SP). IEEE, 2024. http://dx.doi.org/10.1109/sp54263.2024.00269.
Full textNeumann, Felix, Frederik Deroo, Georg Von Wichert, and Darius Burschka. "Particle-Based Dynamic Semantic Occupancy Mapping Using Bayesian Generalized Kernel Inference." In 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2024. https://doi.org/10.1109/itsc58415.2024.10920259.
Full textKim, Junyoung, Junwon Seo, and Jihong Min. "Evidential Semantic Mapping in Off-road Environments with Uncertainty-aware Bayesian Kernel Inference." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802766.
Full textSong, Yingchen, Yaobin Wang, Chaoyu Xiong, Tianhai Wang, and Pingping Tang. "An Efficient Sampling-Based SpMM Kernel for Balancing Accuracy and Speed in GNN Inference." In 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2024. https://doi.org/10.1109/ispa63168.2024.00066.
Full textArmeniakos, Giorgos, Georgios Mentzos, and Dimitrios Soudris. "Accelerating TinyML Inference on Microcontrollers Through Approximate Kernels." In 2024 31st IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2024. https://doi.org/10.1109/icecs61496.2024.10848979.
Full textKrajsek, Kai, and Hanno Scharr. "Bayesian inference in kernel feature space." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2012. http://dx.doi.org/10.1063/1.3703633.
Full textSigal, L., R. Memisevic, and D. J. Fleet. "Shared Kernel Information Embedding for discriminative inference." In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2009. http://dx.doi.org/10.1109/cvprw.2009.5206576.
Full textCastro, Ivan, Cristobal Silva, and Felipe Tobar. "Initialising kernel adaptive filters via probabilistic inference." In 2017 22nd International Conference on Digital Signal Processing (DSP). IEEE, 2017. http://dx.doi.org/10.1109/icdsp.2017.8096055.
Full textSigal, Leonid, Roland Memisevic, and David J. Fleet. "Shared Kernel Information Embedding for discriminative inference." In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE, 2009. http://dx.doi.org/10.1109/cvpr.2009.5206576.
Full textDoherty, Kevin, Jinkun Wang, and Brendan Englot. "Bayesian generalized kernel inference for occupancy map prediction." In 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017. http://dx.doi.org/10.1109/icra.2017.7989356.
Full text