Journal articles on the topic 'Kernel Inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Kernel Inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nishiyama, Yu, Motonobu Kanagawa, Arthur Gretton, and Kenji Fukumizu. "Model-based kernel sum rule: kernel Bayesian inference with probabilistic models." Machine Learning 109, no. 5 (2020): 939–72. http://dx.doi.org/10.1007/s10994-019-05852-9.
Full textRogers, Mark F., Colin Campbell, and Yiming Ying. "Probabilistic Inference of Biological Networks via Data Integration." BioMed Research International 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/707453.
Full textLUGO-MARTINEZ, JOSE, and PREDRAG RADIVOJAC. "Generalized graphlet kernels for probabilistic inference in sparse graphs." Network Science 2, no. 2 (2014): 254–76. http://dx.doi.org/10.1017/nws.2014.14.
Full textLazarus, Eben, Daniel J. Lewis, and James H. Stock. "The Size‐Power Tradeoff in HAR Inference." Econometrica 89, no. 5 (2021): 2497–516. http://dx.doi.org/10.3982/ecta15404.
Full textBillio, M. "Kernel-Based Indirect Inference." Journal of Financial Econometrics 1, no. 3 (2003): 297–326. http://dx.doi.org/10.1093/jjfinec/nbg014.
Full textZhang, Li Lyna, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, and Yunxin Liu. "nn-METER." GetMobile: Mobile Computing and Communications 25, no. 4 (2022): 19–23. http://dx.doi.org/10.1145/3529706.3529712.
Full textRobinson, P. M. "INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS." Econometric Theory 25, no. 6 (2009): 1716–33. http://dx.doi.org/10.1017/s0266466609990302.
Full textYuan, Ao. "Semiparametric inference with kernel likelihood." Journal of Nonparametric Statistics 21, no. 2 (2009): 207–28. http://dx.doi.org/10.1080/10485250802553382.
Full textCheng, Yansong, and Surajit Ray. "Multivariate Modality Inference Using Gaussian Kernel." Open Journal of Statistics 04, no. 05 (2014): 419–34. http://dx.doi.org/10.4236/ojs.2014.45041.
Full textAgbokou, Komi, and Yaogan Mensah. "INFERENCE ON THE REPRODUCING KERNEL HILBERT SPACES." Universal Journal of Mathematics and Mathematical Sciences 15 (October 10, 2021): 11–29. http://dx.doi.org/10.17654/2277141722002.
Full textMemisevic, R., L. Sigal, and D. J. Fleet. "Shared Kernel Information Embedding for Discriminative Inference." IEEE Transactions on Pattern Analysis and Machine Intelligence 34, no. 4 (2012): 778–90. http://dx.doi.org/10.1109/tpami.2011.154.
Full textMaswadah, M. "Kernel Inference on the Inverse Weibull Distribution." Communications for Statistical Applications and Methods 13, no. 3 (2006): 503–12. http://dx.doi.org/10.5351/ckss.2006.13.3.503.
Full textRacine, Jeffrey S., and James G. MacKinnon. "Inference via kernel smoothing of bootstrap values." Computational Statistics & Data Analysis 51, no. 12 (2007): 5949–57. http://dx.doi.org/10.1016/j.csda.2006.11.013.
Full textSun, Yixiao, and Jingjing Yang. "Testing-optimal kernel choice in HAR inference." Journal of Econometrics 219, no. 1 (2020): 123–36. http://dx.doi.org/10.1016/j.jeconom.2020.06.007.
Full textKondratyev, Dmitry A. "Towards Automatic Deductive Verification of C Programs with Sisal Loops Using the C-lightVer System." Modeling and Analysis of Information Systems 28, no. 4 (2021): 372–93. http://dx.doi.org/10.18255/1818-1015-2021-4-372-393.
Full textLei, Zijian, and Liang Lan. "Memory and Computation-Efficient Kernel SVM via Binary Embedding and Ternary Model Coefficients." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8316–23. http://dx.doi.org/10.1609/aaai.v35i9.17011.
Full textCawley, Gavin C., and Nicola L. C. Talbot. "Kernel learning at the first level of inference." Neural Networks 53 (May 2014): 69–80. http://dx.doi.org/10.1016/j.neunet.2014.01.011.
Full textWang, Kai. "Conditional asymptotic inference for the kernel association test." Bioinformatics 33, no. 23 (2017): 3733–39. http://dx.doi.org/10.1093/bioinformatics/btx511.
Full textLu, Chi-Ken, and Patrick Shafto. "Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning." Entropy 23, no. 11 (2021): 1387. http://dx.doi.org/10.3390/e23111387.
Full textKumar, Mukesh, and Santanu Kumar Rath. "Classification of Microarray Data Using Kernel Fuzzy Inference System." International Scholarly Research Notices 2014 (August 21, 2014): 1–18. http://dx.doi.org/10.1155/2014/769159.
Full textMassaroppe, Lucas, and Luiz Baccalá. "Kernel Methods for Nonlinear Connectivity Detection." Entropy 21, no. 6 (2019): 610. http://dx.doi.org/10.3390/e21060610.
Full textStordal, Andreas S., Rafael J. Moraes, Patrick N. Raanes, and Geir Evensen. "p-Kernel Stein Variational Gradient Descent for Data Assimilation and History Matching." Mathematical Geosciences 53, no. 3 (2021): 375–93. http://dx.doi.org/10.1007/s11004-021-09937-x.
Full textAuzina, Ilze A., and Jakub M. Tomczak. "Approximate Bayesian Computation for Discrete Spaces." Entropy 23, no. 3 (2021): 312. http://dx.doi.org/10.3390/e23030312.
Full textXiao, Chengcheng, Xiaowen Liu, Chi Sun, Zhongyu Liu, and Enjie Ding. "Hierarchical Prototypes Polynomial Softmax Loss Function for Visual Classification." Applied Sciences 12, no. 20 (2022): 10336. http://dx.doi.org/10.3390/app122010336.
Full textLiang, Junjie, Yanting Wu, Dongkuan Xu, and Vasant G. Honavar. "Longitudinal Deep Kernel Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 8556–64. http://dx.doi.org/10.1609/aaai.v35i10.17038.
Full textNie, Junlan, Ruibo Gao, and Ye Kang. "Urban Noise Inference Model Based on Multiple Views and Kernel Tensor Decomposition." Fluctuation and Noise Letters 20, no. 03 (2021): 2150027. http://dx.doi.org/10.1142/s0219477521500279.
Full textHou, Yuxin, Ari Heljakka, and Arno Solin. "Gaussian Process Priors for View-Aware Inference." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Full textMaswadah, Mohamed, and Seham Mohamed. "Bayesian Inference on the Generalized Exponential Distribution Based on the Kernel Prior." Science Journal of Applied Mathematics and Statistics 12, no. 2 (2024): 29–36. http://dx.doi.org/10.11648/j.sjams.20241202.12.
Full textWang, Qihuan, Haolin Yang, Qianghao He, Dong Yue, Ce Zhang, and Duanyang Geng. "Real-Time Detection System of Broken Corn Kernels Based on BCK-YOLOv7." Agronomy 13, no. 7 (2023): 1750. http://dx.doi.org/10.3390/agronomy13071750.
Full textZhang, Rui, Christian Walder, and Marian-Andrei Rizoiu. "Variational Inference for Sparse Gaussian Process Modulated Hawkes Process." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 6803–10. http://dx.doi.org/10.1609/aaai.v34i04.6160.
Full textCui, Chen, Shengyi Jiang, and Bruno C. d. S. Oliveira. "Greedy Implicit Bounded Quantification." Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023): 2083–111. http://dx.doi.org/10.1145/3622871.
Full textTeng, Tong, Jie Chen, Yehong Zhang, and Bryan Kian Hsiang Low. "Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 5997–6004. http://dx.doi.org/10.1609/aaai.v34i04.6061.
Full textGudmundarson, Ragnar L., and Gareth W. Peters. "Assessing portfolio diversification via two-sample graph kernel inference. A case study on the influence of ESG screening." PLOS ONE 19, no. 4 (2024): e0301804. http://dx.doi.org/10.1371/journal.pone.0301804.
Full textRocha, Gustavo H. M. A., Rosangela H. Loschi, and Reinaldo B. Arellano-Valle. "Inference in flexible families of distributions with normal kernel." Statistics 47, no. 6 (2013): 1184–206. http://dx.doi.org/10.1080/02331888.2012.688207.
Full textGao, Junbin, Paul W. Kwan, and Daming Shi. "Sparse kernel learning with LASSO and Bayesian inference algorithm." Neural Networks 23, no. 2 (2010): 257–64. http://dx.doi.org/10.1016/j.neunet.2009.07.001.
Full textCapobianco, Enrico. "Kernel methods and flexible inference for complex stochastic dynamics." Physica A: Statistical Mechanics and its Applications 387, no. 16-17 (2008): 4077–98. http://dx.doi.org/10.1016/j.physa.2008.03.003.
Full textLam, Clifford, and Jianqing Fan. "Profile-kernel likelihood inference with diverging number of parameters." Annals of Statistics 36, no. 5 (2008): 2232–60. http://dx.doi.org/10.1214/07-aos544.
Full textLi, Bochong, and Lingchong You. "Stochastic Sensitivity Analysis and Kernel Inference via Distributional Data." Biophysical Journal 107, no. 5 (2014): 1247–55. http://dx.doi.org/10.1016/j.bpj.2014.07.025.
Full textLi, Degui, Peter C. B. Phillips, and Jiti Gao. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression." Journal of Econometrics 215, no. 2 (2020): 607–32. http://dx.doi.org/10.1016/j.jeconom.2019.10.005.
Full textPatel, Zeel B., Palak Purohit, Harsh M. Patel, Shivam Sahni, and Nipun Batra. "Accurate and Scalable Gaussian Processes for Fine-Grained Air Quality Inference." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12080–88. http://dx.doi.org/10.1609/aaai.v36i11.21467.
Full textRen, Ming, Chi Cheung, and Gao Xiao. "Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement." Sensors 18, no. 11 (2018): 4069. http://dx.doi.org/10.3390/s18114069.
Full textSong, Le, Kenji Fukumizu, and Arthur Gretton. "Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models." IEEE Signal Processing Magazine 30, no. 4 (2013): 98–111. http://dx.doi.org/10.1109/msp.2013.2252713.
Full textGonzález-Vanegas, Wilson, Andrés Álvarez-Meza, José Hernández-Muriel, and Álvaro Orozco-Gutiérrez. "AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning." Entropy 21, no. 10 (2019): 932. http://dx.doi.org/10.3390/e21100932.
Full textHuh, Jaeseok, Jonghun Park, Dongmin Shin, and Yerim Choi. "A Hierarchical SVM Based Behavior Inference of Human Operators Using a Hybrid Sequence Kernel." Sustainability 11, no. 18 (2019): 4836. http://dx.doi.org/10.3390/su11184836.
Full textLee, Dong-Yeong, Hayotjon Aliev, Muhammad Junaid, et al. "High-Speed CNN Accelerator SoC Design Based on a Flexible Diagonal Cyclic Array." Electronics 13, no. 8 (2024): 1564. http://dx.doi.org/10.3390/electronics13081564.
Full textMohanty, Pete, and Robert Shaffer. "Messy Data, Robust Inference? Navigating Obstacles to Inference with bigKRLS." Political Analysis 27, no. 2 (2018): 127–44. http://dx.doi.org/10.1017/pan.2018.33.
Full textDixit, Purushottam D. "Introducing User-Prescribed Constraints in Markov Chains for Nonlinear Dimensionality Reduction." Neural Computation 31, no. 5 (2019): 980–97. http://dx.doi.org/10.1162/neco_a_01184.
Full textUeda, K. "Design of the Kernel Language for the Parallel Inference Machine." Computer Journal 33, no. 6 (1990): 494–500. http://dx.doi.org/10.1093/comjnl/33.6.494.
Full textTsionas, Efthymios G. "Bayesian inference in time series models using kernel quasi likelihoods." Statistica Neerlandica 56, no. 3 (2002): 285–94. http://dx.doi.org/10.1111/1467-9574.04800.
Full textCai, Qianfeng, Zhifeng Hao, and Xiaowei Yang. "Gaussian kernel-based fuzzy inference systems for high dimensional regression." Neurocomputing 77, no. 1 (2012): 197–204. http://dx.doi.org/10.1016/j.neucom.2011.09.005.
Full text