Academic literature on the topic 'Kernel mean embedding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kernel mean embedding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kernel mean embedding"
Jorgensen, Palle E. T., Myung-Sin Song, and James Tian. "Conditional mean embedding and optimal feature selection via positive definite kernels." Opuscula Mathematica 44, no. 1 (2024): 79–103. http://dx.doi.org/10.7494/opmath.2024.44.1.79.
Full textMuandet, Krikamol, Kenji Fukumizu, Bharath Sriperumbudur, and Bernhard Schölkopf. "Kernel Mean Embedding of Distributions: A Review and Beyond." Foundations and Trends® in Machine Learning 10, no. 1-2 (2017): 1–141. http://dx.doi.org/10.1561/2200000060.
Full textVan Hauwermeiren, Daan, Michiel Stock, Thomas De Beer, and Ingmar Nopens. "Predicting Pharmaceutical Particle Size Distributions Using Kernel Mean Embedding." Pharmaceutics 12, no. 3 (2020): 271. http://dx.doi.org/10.3390/pharmaceutics12030271.
Full textXu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation Graph Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Full textRustamov, Raif M., and James T. Klosowski. "Kernel mean embedding based hypothesis tests for comparing spatial point patterns." Spatial Statistics 38 (August 2020): 100459. http://dx.doi.org/10.1016/j.spasta.2020.100459.
Full textHou, Boya, Sina Sanjari, Nathan Dahlin, and Subhonmesh Bose. "Compressed Decentralized Learning of Conditional Mean Embedding Operators in Reproducing Kernel Hilbert Spaces." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 7 (2023): 7902–9. http://dx.doi.org/10.1609/aaai.v37i7.25956.
Full textSegera, Davies, Mwangi Mbuthia, and Abraham Nyete. "Particle Swarm Optimized Hybrid Kernel-Based Multiclass Support Vector Machine for Microarray Cancer Data Analysis." BioMed Research International 2019 (December 16, 2019): 1–11. http://dx.doi.org/10.1155/2019/4085725.
Full textWang, Yufan, Zijing Wang, Kai Ming Ting, and Yuanyi Shang. "A Principled Distributional Approach to Trajectory Similarity Measurement and its Application to Anomaly Detection." Journal of Artificial Intelligence Research 79 (March 13, 2024): 865–93. http://dx.doi.org/10.1613/jair.1.15849.
Full textBrandman, David M., Michael C. Burkhart, Jessica Kelemen, Brian Franco, Matthew T. Harrison, and Leigh R. Hochberg. "Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression." Neural Computation 30, no. 11 (2018): 2986–3008. http://dx.doi.org/10.1162/neco_a_01129.
Full textAli, Sarwan, and Murray Patterson. "Improving ISOMAP Efficiency with RKS: A Comparative Study with t-Distributed Stochastic Neighbor Embedding on Protein Sequences." J 6, no. 4 (2023): 579–91. http://dx.doi.org/10.3390/j6040038.
Full textDissertations / Theses on the topic "Kernel mean embedding"
Hsu, Yuan-Shuo Kelvin. "Bayesian Perspectives on Conditional Kernel Mean Embeddings: Hyperparameter Learning and Probabilistic Inference." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/24309.
Full textMuandet, Krikamol [Verfasser], and Bernhard [Akademischer Betreuer] Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Full textMuandet, Krikamol Verfasser], and Bernhard [Akademischer Betreuer] [Schölkopf. "From Points to Probability Measures : Statistical Learning on Distributions with Kernel Mean Embedding / Krikamol Muandet ; Betreuer: Bernhard Schölkopf." Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163664804/34.
Full textFermanian, Jean-Baptiste. "High dimensional multiple means estimation and testing with applications to machine learning." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM035.
Full textChen, Tian Qi. "Deep kernel mean embeddings for generative modeling and feedforward style transfer." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62668.
Full textBooks on the topic "Kernel mean embedding"
Muandet, Krikamol, Kenji Fukumizu, Bharath Kumar Sriperumbudur VanGeepuram, and Bernhard Schölkopf. Kernel Mean Embedding of Distributions: A Review and Beyond. Now Publishers, 2017.
Find full textSriperumbudur, Bharath K. Kernel Mean Embedding of Distributions: A Review and Beyond. 2017.
Find full textBook chapters on the topic "Kernel mean embedding"
Fukumizu, Kenji. "Nonparametric Bayesian Inference with Kernel Mean Embedding." In Modern Methodology and Applications in Spatial-Temporal Modeling. Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55339-7_1.
Full textWickstrøm, Kristoffer, J. Emmanuel Johnson, Sigurd Løkse, et al. "The Kernelized Taylor Diagram." In Communications in Computer and Information Science. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_10.
Full textHsu, Kelvin, Richard Nock, and Fabio Ramos. "Hyperparameter Learning for Conditional Kernel Mean Embeddings with Rademacher Complexity Bounds." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10928-8_14.
Full textXie, Yi, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. "Identifying Helpful Learnwares Without Examining the Whole Market." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230585.
Full textConference papers on the topic "Kernel mean embedding"
Luo, Mingjie, Jie Zhou, and Qingke Zou. "Multisensor Estimation Fusion Based on Kernel Mean Embedding." In 2024 27th International Conference on Information Fusion (FUSION). IEEE, 2024. http://dx.doi.org/10.23919/fusion59988.2024.10706487.
Full textGUAN, ZENGDA, and JUAN ZHANG. "Quantitative Associative Classification Based on Kernel Mean Embedding." In CSAI 2020: 2020 4th International Conference on Computer Science and Artificial Intelligence. ACM, 2020. http://dx.doi.org/10.1145/3445815.3445827.
Full textTang, Shuhao, Hao Tian, Xiaofeng Cao, and Wei Ye. "Deep Hierarchical Graph Alignment Kernels." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/549.
Full textDing, Xiao, Bibo Cai, Ting Liu, and Qiankun Shi. "Domain Adaptation via Tree Kernel Based Maximum Mean Discrepancy for User Consumption Intention Identification." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/560.
Full textZhu, Jia-Jie, Wittawat Jitkrittum, Moritz Diehl, and Bernhard Scholkopf. "Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem." In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9303938.
Full textRomao, Licio, Ashish R. Hota, and Alessandro Abate. "Distributionally Robust Optimal and Safe Control of Stochastic Systems via Kernel Conditional Mean Embedding." In 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023. http://dx.doi.org/10.1109/cdc49753.2023.10383997.
Full textLiu, Qiao, and Hui Xue. "Adversarial Spectral Kernel Matching for Unsupervised Time Series Domain Adaptation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/378.
Full textTan, Peng, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. "Handling Learnwares Developed from Heterogeneous Feature Spaces without Auxiliary Data." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/471.
Full textShan, Siyuan, Vishal Athreya Baskaran, Haidong Yi, Jolene Ranek, Natalie Stanley, and Junier B. Oliva. "Transparent single-cell set classification with kernel mean embeddings." In BCB '22: 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. ACM, 2022. http://dx.doi.org/10.1145/3535508.3545538.
Full textElgohary, Ahmed, Ahmed K. Farahat, Mohamed S. Kamel, and Fakhri Karray. "Embed and Conquer: Scalable Embeddings for Kernel k-Means on MapReduce." In Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014. http://dx.doi.org/10.1137/1.9781611973440.49.
Full text