Academic literature on the topic 'Kerosene'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kerosene.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kerosene"

1

Yuliarita, Emi. "Performance Testing On Mixture Of Kisamir Pure Plant Oil (Ppo) And Kerosene As Wick Stove Fuel." Scientific Contributions Oil and Gas 33, no. 3 (2022): 204–11. http://dx.doi.org/10.29017/scog.33.3.824.

Full text
Abstract:
Pure Plant Oil (PPO) which is made from “kisamir” seed has smaller kinetic viscosity value than jatropha and coconut oil. So it has potential to be used as alternative fuel/mixed kerosene. The test result of some main physical/chemical characteristics of fuel made from kerosine and pure plant oil (5% to 20% volume) are still in the limit of kerosene specification as decided by the government. However, the maximum power test result of the mixture of PPO and kerosene that has been tested on 16 wicks stove shows that the higher content of PPO in kerosene will decrease the maximum stove performance as well as stove’s efficiency value. But the blue color of fire gets clearer, because of less amount of sulfur by adding PPO in kerosene. The use of PPO up to 20% will reduce sulphur content up to 20%.
APA, Harvard, Vancouver, ISO, and other styles
2

Basuki, Teger, and Joko Hartono. "Analisis Ekonomi Penggunaan Minyak Biji Kapas (MBK) untuk Bahan Bakar Nabati." Buletin Tanaman Tembakau, Serat & Minyak Industri 3, no. 2 (2016): 66. http://dx.doi.org/10.21082/bultas.v3n2.2011.66-70.

Full text
Abstract:
<p>Penelitian ini bertujuan untuk menganalisis secara ekonomi efisiensi penggunaan minyak biji kapas sebagai bahan bakar nabati (BBN) untuk kompor Semawar 203. Perlakuan yang diteliti sebanyak lima perlakuan, yaitu (1) 100% minyak biji kapas, (2) 75% minyak biji kapas dicampur 25% kerosin, (3) 50% minyak biji ka-pas dicampur 50% kerosin, (4) 25% minyak biji kapas dicampur 75% kerosin, (5) 100% kerosin. Hasil pene-litian menunjukkan bahwa dengan menggunakan kompor tekan Semawar tipe 203 dengan bahan bakar campuran antara 50% minyak biji kapas (MBK) dan 50% kerosin menunjukkan efisiensi tertinggi. Dengan biaya sebesar Rp 689,00 mampu untuk mendidihkan 2 liter air dalam waktu 6,20 menit (waktu didihnya pa-ling cepat di antara perlakuan lainnya).</p><p> </p><p>Purpose of this study was to analyze the efficiency of cotton seed oil used as a biofuel using Semawar 203 stove. The treatments consist of, i.e.: (1) 100% cotton seed oil, (2) 75% cotton seed oil mixture 25% kero-sene, (3) 50% cotton seed oil mixture 50% kerosene, (4) 25% cotton seed oil mixture 75% kerosene, (5) 100% kerosene. The results showed that by using the stove press Semawar type 203 with a fuel mixture of 50% cotton seed oil and 50% kerosene had the highest efficiency of cost. At a cost of Rp689,00 the mixture was able to boil 2 liters of water in 6.20 minutes (boiling time fastest among other treatments).</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Mulyono, Panut, I. Made Bendiyasa, Dita Budi Wibawa, and Suryo Birowo. "Sistem penyimpanan energi panas kontak langsung menggunakan larutan Na2HPO4•12H2O." Jurnal Teknik Kimia Indonesia 4, no. 3 (2018): 270. http://dx.doi.org/10.5614/jtki.2005.4.3.2.

Full text
Abstract:
The volumetric coefficient of heat transfer and the energy storage capacity in a direct contact thermal energy storage system using Na2HPO4.12H2O solution as thermal energy storage medium have been investigated. Hot kerosene was used as a heal transfer fluid. The experiments were carried out by bubbling hot kerosene from the bottom of a column containing Na2HPO4.12H2O solution. The column used in this experiment was made from glass of 3 mm in thickness with an inside diameter of 7 cm and a height of 100 cm. The effects of kerosene flow rate and kerosene bubble diameter on the volumetric coefficient of heat transfer and the storing rate of energy were studied. It was found that the volumetric coefficient of heat transfer was strongly affected by the flow rate of the kerosene and that the effect of the kerosene flow rate on the storing rate of energy was relative v high, while that of the effect of the bubble diameter was neglectable.Keywords: Direct Contact, Thermal Energy Storage System, Na2HPO4.12H2O Solution AbstrakPenelitian ini mempelajari sistem penyimpanan energi panas kontak langsung menggunakan larutan Na2HPO4.12H2O sebagai media penyimpan energi. Kerasin panas digunakan sebagai fluida alir sumber energi panas. Masalah yang dipelajari pada penelitian ini adalah nilai koefisien perpindahan panas volumetris dan kapasitas penyimpanan panasnya. Percobaan dilakukan dengan menggelembungkan kerasin panas dari dasar kolom yang berisi larutan Na2HPO4.12H2O. Kolom yang digunakan dibuat dari gelas dengan ketebalan 3 mm, mempunyai diameter dalam 7 cm, dan tinggi kolomnya adalah 100 cm. Parameter yang dipelajari dalam penelitian ini adalah pengaruh kecepatan volumetris kerosin dan pengaruh diameter gelembung kerosin terhadap nilai koefisien perpindahan panas volumetris dan terhadap kecepatan penyimpanan panasnya. Hasil penelitian menunjukkan bahwa nilai koejisien perpindahan panas volumetris sangat dipengaruhi oleh kecepatan volumetris kerosin sehingga kecepatan penyimpanan panasnya juga sangat dipengaruhi oleh kecepatan volumetris kerosin. Pengaruh ukuran diameter gelembung terhadap nilai koefisien perpindahan panas volumetris dan terhadap kecepatan penyimpanan panasnya sangat kecil sehingga dapat diabaikan.Kata Kunci: Sistem Penyimpanan Energi Panas, Kontak Langsung, Larutan Na2HPO4.12H2O
APA, Harvard, Vancouver, ISO, and other styles
4

Alkanchi, Nasiru Ahmad, Muhammad Bello, and Said Sani Said. "Effect of Kerosene on the Growth of Nitrifying Bacteria Isolated From Soil." Sahel Journal of Life Sciences FUDMA 1, no. 1 (2023): 189–97. http://dx.doi.org/10.33003/sajols-2023-0101-020.

Full text
Abstract:
The environment is being subjected to an increasing amount of stress due to the alterations caused by the pollution of refined petroleum products such as kerosene. These changes might be substantial, which would have a big effect on the environment and, in turn, the farm output. Determining the potential toxicities of kerosene dosage response relationships to sensitive species, like soil microbes, is crucial. This investigation assessed how kerosene affected the nitrifying bacteria that were taken out of farmland's soil. We observed the population changes of the two nitrifying bacteria that were isolated from soil samples after they were exposed to varying concentrations of kerosene (0.5%, 1%, 2%, 5%, and 10%) for duration of 120 hours. Using a mineral salts media, the effects of kerosene on the two nitrifying bacteria were investigated. Samples were taken from the medium every 24 hours to gauge the growth of the bacteria, and a spectrophotometer was used to quantify the turbidity at 600 nm. The result showed that as kerosene concentrations were exposed to these bacteria over longer periods of time, the survivability of Nitrosomonas sp. and Nitrobacter sp. decreased. The toxicity studies' findings demonstrated that the degree of kerosene's toxicity to Nitrosomonas and Nitrobacter species depended on the quantity of pollutants present and the length of the contact period.
APA, Harvard, Vancouver, ISO, and other styles
5

Young, Jay A. "Kerosene." Journal of Chemical Education 86, no. 1 (2009): 25. http://dx.doi.org/10.1021/ed086p25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matsuda-Taniguchi, Tomoyo, Naoko Wada, Ayaka Eto, Nanae Kimura, and Hiroshi Uchi. "Kerosene Dermatitis." Nishi Nihon Hifuka 81, no. 6 (2019): 457–58. http://dx.doi.org/10.2336/nishinihonhifu.81.457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maheshwari, Anu, and Sameer Gulati. "Kerosene poisoning." Indian Journal of Medical Specialities 9, no. 3 (2018): 163–66. http://dx.doi.org/10.1016/j.injms.2018.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shabkhez, Hibah. "Kerosene Kindness." Pleiades: Literature in Context 43, no. 2 (2023): 139. http://dx.doi.org/10.1353/plc.2023.a913047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chung, Kyu‐Huck, Jang‐Hoon Lee, and Kyoung S. Ro. "Composting of kerosene‐contaminated soil: Fate of kerosene." Journal of Environmental Science and Health, Part A 35, no. 7 (2000): 1183–94. http://dx.doi.org/10.1080/10934520009377027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Furqon, Zami. "Maksimasi Produk Avtur Dengan Pengaturan Cutting Point Di Kolom Fraksinasi Unit Hydrocracking Complex." Jurnal Ilmiah Teknik Kimia 5, no. 2 (2021): 92. http://dx.doi.org/10.32493/jitk.v5i2.12069.

Full text
Abstract:
Abstrak Fraksionator di Unit Hydro Cracking Complex, merupakan jenis proses distilasi atmosferis yang mengolah jenis minyak berat campuran dari berbagai sumber seperti HVGO dan HCGO di HCC Unit untuk mendapatkan produk berupa LPG, light naphta, heavy naphta, Light Kerosene, Heavy Kerosene, diesel dan Net Bottom Fractinatotion. Perubahan Cutting Point pada produk Heavy Kerosene akan berdampak pada perubahan yield Heavy Kerosene dan kondisi operasi pada kolom fraksinasi yaitu draw tray Heavy Kerosene. Perubahan cutting point pada produk Heavy Kerosene juga akan menyebabkan perubahan sifat produk Avtur seperti density, flash point, Kuop, freezing point. Penurunan Cutting Point antara Heavy Kerosene dan Diesel sebesar 5 °F, dapat meningkatkan yield produk Heavy Kerosene hingga mencapai 0.78 % volume on crude atau sebesar 1.57 m³/jam. Perubahan cutting point akan diikuti juga dengan perubahan kondisi operasi pada kolom fraksionatornya, yaitu didapat suhu Heavy Kerosene draw tray sebesar 224°C. Keywords : Average Boiling Point, Cutting Point, Fractionation, Hydrocracking, Kerosene.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography