Journal articles on the topic 'Kesterite Absorber'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Kesterite Absorber.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Scaffidi, Romain, Guy Brammertz, Yibing Wang, et al. "A study of bandgap-graded CZTGSe kesterite thin films for solar cell applications." Energy Advances 2, no. 10 (2023): 1626. https://doi.org/10.1039/d3ya00359k.
Full textEstrada-Ayub, J. A., L. Álvarez Contreras, M. Román Aguirre, et al. "Novel Evaporation Process for Deposition of Kesterite Thin Films Synthesized by Solvothermal Method." Advances in Materials Science and Engineering 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7905343.
Full textBasri, Katrul Nadia, Noriza Ahmad Zabidi, Hasan Abu Kassim, and Ahmad Nazrul Rosli. "Density Functional Theory (DFT) Calculation of Band Structure of Kesterite." Advanced Materials Research 1107 (June 2015): 491–95. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.491.
Full textRomanyuk, Yaroslav E., Stefan G. Haass, Sergio Giraldo, et al. "Doping and alloying of kesterites." JPhys Energy 1 (August 29, 2019): 044004. https://doi.org/10.1088/2515-7655/ab23bc.
Full textKong, Le, and Jin Xiang Deng. "First-Principles Study on Electronic and Optical Properties of Kesterite and Stannite Cu2ZnSnS4 Photovoltaic Absorbers." Materials Science Forum 815 (March 2015): 80–88. http://dx.doi.org/10.4028/www.scientific.net/msf.815.80.
Full textNowak, David, Talat Khonsor, Devendra Pareek, and Levent Gütay. "Vapor-Phase Incorporation of Ge in CZTSe Absorbers for Improved Stability of High-Efficiency Kesterite Solar Cells." Applied Sciences 12, no. 3 (2022): 1376. http://dx.doi.org/10.3390/app12031376.
Full textMitzi, David B., Oki Gunawan, Teodor K. Todorov, and D. Aaron R. Barkhouse. "Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1996 (2013): 20110432. http://dx.doi.org/10.1098/rsta.2011.0432.
Full textSchnabel, Thomas, Mahmoud Seboui, and Erik Ahlswede. "Evaluation of different metal salt solutions for the preparation of solar cells with wide-gap Cu2ZnGeSxSe4-x absorbers." RSC Advances 7, no. 1 (2016): 26–30. https://doi.org/10.1039/C6RA23068G.
Full textBoerasu, Iulian, and Bogdan Stefan Vasile. "Current Status of the Open-Circuit Voltage of Kesterite CZTS Absorber Layers for Photovoltaic Applications—Part I, a Review." Materials 15, no. 23 (2022): 8427. http://dx.doi.org/10.3390/ma15238427.
Full textKurihara, Masato, Dominik Berg, Johannes Fischer, Susanne Siebentritt, and Phillip J. Dale. "Kesterite absorber layer uniformity from electrodeposited pre-cursors." physica status solidi (c) 6, no. 5 (2009): 1241–44. http://dx.doi.org/10.1002/pssc.200881154.
Full textWallace, Suzanne K., Jarvist Moore Frost, and Aron Walsh. "Atomistic insights into the order–disorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations." Journal of Materials Chemistry A 7, no. 1 (2019): 312–21. http://dx.doi.org/10.1039/c8ta04812f.
Full textSchnabel, T., M. Seboui, and E. Ahlswede. "Evaluation of different metal salt solutions for the preparation of solar cells with wide-gap Cu2ZnGeSxSe4−x absorbers." RSC Advances 7, no. 1 (2017): 26–30. http://dx.doi.org/10.1039/c6ra23068g.
Full textALITI, Ramadan, Yoganash PUTTHISIGAMANY, and Mimoza RISTOVA. "LI-DOPED CZTS, SYNTHESIZED BY SPIN-COATING, FOR IMPROVED PV CELL PERFORMANCE." Journal of Natural Sciences and Mathematics of UT-JNSM 9, no. 17-18 (2024): 489–97. http://dx.doi.org/10.62792/ut.jnsm.v9.i17-18.p2846.
Full textKüllmey, Tim, Miguel González, Eva M. Heppke, and Beate Paulus. "Calculation for High Pressure Behaviour of Potential Solar Cell Materials Cu2FeSnS4 and Cu2MnSnS4." Crystals 11, no. 2 (2021): 151. http://dx.doi.org/10.3390/cryst11020151.
Full textTaskesen, Teoman, Devendra Pareek, Janet Neerken, et al. "The effect of excess selenium on the opto-electronic properties of Cu2ZnSnSe4 prepared from Cu–Sn alloy precursors." RSC Advances 9, no. 36 (2019): 20857–64. http://dx.doi.org/10.1039/c9ra02779c.
Full textDale, Phillip J., Monika Arasimowicz, Diego Colombara, Alexandre Crossay, Erika Robert, and Aidan A. Taylor. "Is it Possible to Grow Thin Films of Phase Pure Kesterite Semiconductor? A ZnSe case study." MRS Proceedings 1538 (2013): 83–94. http://dx.doi.org/10.1557/opl.2013.1006.
Full textNowak, David, Talat Khonsor, Devendra Pareek, and Levent Gütay. "Vapor-Phase Incorporation of Ge in CZTSe Absorbers for Improved Stability of High-Efficiency Kesterite Solar Cells." Applied Sciences 12, no. 3 (2022): 1376. https://doi.org/10.3390/app12031376.
Full textSchnabel, Thomas, Mahmoud Seboui, Andreas Bauer, et al. "Evaluation of different buffer materials for solar cells with wide-gap Cu2ZnGeSxSe4-x absorbers." RSC Advances 7 (August 8, 2017): 40105–10. https://doi.org/10.1039/C7RA06438A.
Full textGong, Yuancai, Yifan Zhang, Qiang Zhu, et al. "Identifying the origin of the Voc deficit of kesterite solar cells from the two grain growth mechanisms induced by Sn2+ and Sn4+ precursors in DMSO solution." Energy & Environmental Science 14, no. 4 (2021): 2369–80. http://dx.doi.org/10.1039/d0ee03702h.
Full textGunder, R., J. A. Márquez-Prieto, G. Gurieva, T. Unold, and S. Schorr. "Structural characterization of off-stoichiometric kesterite-type Cu2ZnGeSe4 compound semiconductors: from cation distribution to intrinsic point defect density." CrystEngComm 20, no. 11 (2018): 1491–98. http://dx.doi.org/10.1039/c7ce02090b.
Full textB., NDIAYE, M. KEITA E., NDIAYE M., SAGNA A., MBOW B., and SENE C. "Simulation and Optimization of CZTS-based Photovoltaic Devices: Effect of Deposition Temperature on Cell performance." European Journal of Advances in Engineering and Technology 10, no. 5 (2023): 9–14. https://doi.org/10.5281/zenodo.10636569.
Full textMasanawa, Aliyu A., Alhassan Shuaibu, Muhammed M. Aliyu, and Ismail Magaji. "First Principle Investigation on Electronic Properties of Cationic and Anionic CO-Alloyed Cu2ZnSnS4 Kesterite Material." Materials for third generation solar cells and other energy related applications 02, no. 03 (2022): 13–16. http://dx.doi.org/10.47514/phyaccess.sp.iss.2022.1.003.
Full textPareek, Devendra, K. R. Balasubramaniam, and Pratibha Sharma. "Synthesis and characterization of kesterite Cu2ZnSnTe4via ball-milling of elemental powder precursors." RSC Advances 6, no. 73 (2016): 68754–59. http://dx.doi.org/10.1039/c6ra09112a.
Full textBuffiere, Marie, Abdel Aziz El Mel, Nick Lenaers, et al. "Surface Cleaning and Passivation of Chalcogenide Thin Films Using S(NH4)2 Chemical Treatment." Solid State Phenomena 219 (September 2014): 320–23. http://dx.doi.org/10.4028/www.scientific.net/ssp.219.320.
Full textNiu, Chuanyou, Yuancai Gong, Ruichan Qiu, et al. "11.5% efficient Cu2ZnSn(S,Se)4 solar cell fabricated from DMF molecular solution." Journal of Materials Chemistry A 9, no. 22 (2021): 12981–87. http://dx.doi.org/10.1039/d1ta01871j.
Full textRondón Almeyda, Carlos Eduardo, Monica Andrea Botero Londoño, and Rogelio Ospina Ospina. "Finite Element Analysis of An Evaporation System to Synthesize Kesterite thin Films." Revista Ingenierías Universidad de Medellín 20, no. 38 (2021): 51–66. http://dx.doi.org/10.22395/rium.v20n38a3.
Full textSchorr, S., M. Tovar, A. Weber, H. Krauth, V. Honkimaki, and H. Schock. "Kesterite – an alternative absorber material for thin-film solar cells." Acta Crystallographica Section A Foundations of Crystallography 64, a1 (2008): C59—C60. http://dx.doi.org/10.1107/s0108767308098103.
Full textPani, Bhagyashree, Sujit Pillai, and Udai P. Singh. "Kesterite based thin film absorber layers from ball milled precursors." Journal of Materials Science: Materials in Electronics 27, no. 12 (2016): 12412–17. http://dx.doi.org/10.1007/s10854-016-5205-y.
Full textSchnabel, Thomas, Mahmoud Seboui, and Erik Ahlswede. "Band gap tuning of Cu2ZnGeSxSe4-x absorbers for thin-film solar cells." Energies 10 (November 9, 2017): 1813. https://doi.org/10.3390/en10111813.
Full textJimenez-Arguijo, Alex, Medaille Axel Gon, Alejandro Navarro-Güell, et al. "Setting the baseline for the modelling of Kesterite solar cells: The case study of tandem application." Solar Energy Materials and Solar Cells 251 (March 7, 2023): 112109. https://doi.org/10.1016/j.solmat.2022.112109.
Full textMessei, N., M. S. Aida, A. Attaf, N. Hamani, and S. Laznek. "Numerical simulation of the effect of gradual substitution of sulfur with selenium or tin with germanium in Cu2ZnSnS4 absorber layer on kesterite solar cell efficiency." Chalcogenide Letters 20, no. 2 (2023): 165–75. http://dx.doi.org/10.15251/cl.2023.202.165.
Full textLiu, Fangyang, Shanshan Shen, Fangzhou Zhou, et al. "Kesterite Cu2ZnSnS4thin film solar cells by a facile DMF-based solution coating process." Journal of Materials Chemistry C 3, no. 41 (2015): 10783–92. http://dx.doi.org/10.1039/c5tc01750e.
Full textMessei, N. "Influence of absorber layer gradual gap profile on Cu2ZnSn(S1-Y SeY )4 solar cell efficiency: Numerical study." Journal of Fundamental and Applied Sciences 13, no. 1 (2021): 385–99. http://dx.doi.org/10.4314/jfas.v13i1.20.
Full textDell'Oro, Ruben, Roberto Della Vedova, Stefano Marchionna, and Luca Magagnin. "Co-Electrodeposition of Metallic Precursors for Cd-Doped Cu2ZnSnS4 (CZCTS) Kesterite Absorber for Photoelectrochemical Water Splitting." ECS Meeting Abstracts MA2022-02, no. 22 (2022): 934. http://dx.doi.org/10.1149/ma2022-0222934mtgabs.
Full textChen, Shiyou, X. G. Gong, Aron Walsh, and Su-Huai Wei. "Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4." Applied Physics Letters 96, no. 2 (2010): 021902. http://dx.doi.org/10.1063/1.3275796.
Full textQu, Yongtao, See Wee Chee, Martial Duchamp, et al. "Real-Time Electron Nanoscopy of Photovoltaic Absorber Formation from Kesterite Nanoparticles." ACS Applied Energy Materials 3, no. 1 (2019): 122–28. http://dx.doi.org/10.1021/acsaem.9b01732.
Full textErrafyg, Abdeljalil, Naoufal Ennouhi, Yassine Chouimi, and Zouheir Sekkat. "Influence of Copper and Tin Oxidation States on the Phase Evolution of Solution-Processed Ag-Alloyed CZTS Photovoltaic Absorbers." Energies 17, no. 24 (2024): 6341. https://doi.org/10.3390/en17246341.
Full textRudzikas, Matas, Saulius Pakalka, Jolanta Donėlienė, and Arūnas Šetkus. "Exploring the Potential of Pure Germanium Kesterite for a 2T Kesterite/Silicon Tandem Solar Cell: A Simulation Study." Materials 16, no. 18 (2023): 6107. http://dx.doi.org/10.3390/ma16186107.
Full textAydin, Remzi, and Idris Akyuz. "Two-stage production and characterization of Cu-poor kesterite CZTS absorber layers." Optik 200 (January 2020): 163407. http://dx.doi.org/10.1016/j.ijleo.2019.163407.
Full textMárquez, José, Helena Stange, Charles J. Hages, et al. "Chemistry and Dynamics of Ge in Kesterite: Toward Band-Gap-Graded Absorbers." Chemistry of Materials 29, no. 21 (2017). https://doi.org/10.1021/acs.chemmater.7b03416.
Full textBart, Vermang Guy Brammertz Marc Meuris Thomas Schnabel Erik Ahlswede Leo Choubrac Sylvie Harel Christophe Cardinaud Ludovic Arzel Nicolas Barreau Joop van Deelen Pieter-Jan Bolt Patrice Bras Yi Ren Eric Jaremalm Samira Khelifi Sheng Yang Johan Lauwaert Maria Batuk Joke Hadermann Xeniya Kozina Evelyn Handick Claudia Hartmann Dominic Gerlach Asahiko Matsuda Shigenori Ueda Toyohiro Chikyow Roberto Félix Yufeng Zhang Regan G. Wilks Marcus Bär. "Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices." Sustainable Energy & Fuels, June 24, 2019. https://doi.org/10.1039/c9se00266a.
Full textWang, Yuanyuan, Jiaqi Wang, Zucheng Wu, et al. "Spin‐Coating Se in Precursor to Improve Absorber Crystallinity and Reduce Defects Enabling 13.57% Efficiency for Kesterite Solar Cells." Solar RRL, January 2025. https://doi.org/10.1002/solr.202400735.
Full textKunal, J. Tiwari, Fonoll Rubio Robert, Giraldo Sergio, et al. "Defect depth-profiling in kesterite absorber by means of chemical etching and surface analysis." February 28, 2021. https://doi.org/10.5281/zenodo.6411672.
Full textCabas-Vidani, Antonio, Stefan Haass, Christian Andres, et al. "High-Efficiency (LixCu1−x)2ZnSn(S,Se)4 Kesterite Solar Cells with Lithium Alloying." October 16, 2018. https://doi.org/10.1002/aenm.201801191.
Full textWang, Jinlin, Jiangjian Shi, Kang Yin, et al. "Pd(II)/Pd(IV) redox shuttle to suppress vacancy defects at grain boundaries for efficient kesterite solar cells." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-48850-9.
Full textNowak, David, Teoman Taskesen, Devendra Pareek, Timo Pfeiffelmann, Ulf Mikolajczak, and Levent Gütay. "Tuning of Precursor Composition and Formation Pathway of Kesterite Absorbers Using an In-Process Composition Shift: A Path toward Higher Efficiencies?" July 11, 2021. https://doi.org/10.1002/solr.202100237.
Full textPayno, David, Samrana Kazim, Manuel Salado, and Shahzada Ahmad. "Sulfurization temperature effects on crystallization and performance of superstrate CZTS solar cells." June 29, 2021. https://doi.org/10.5281/zenodo.5041735.
Full textHaass, S. G., C. Andres, R. Figi, et al. "Effects of potassium on kesterite solar cells: Similarities, differences and synergies with sodium." January 30, 2018. https://doi.org/10.1063/1.5013114.
Full textSusan, Schorr, Gurieva Galina, Guc Maxim, et al. "Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites." December 10, 2019. https://doi.org/10.1088/2515-7655/ab4a25.
Full textXu, Xiao, Jiazheng Zhou, Kang Yin, et al. "Controlling Selenization Equilibrium Enables High-Quality Kesterite Absorbers for Efficient Solar Cells." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-42460-7.
Full text