Academic literature on the topic 'Keyword spotting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Keyword spotting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Keyword spotting"
Keshet, Joseph, David Grangier, and Samy Bengio. "Discriminative keyword spotting." Speech Communication 51, no. 4 (April 2009): 317–29. http://dx.doi.org/10.1016/j.specom.2008.10.002.
Full textRetsinas, George, Georgios Louloudis, Nikolaos Stamatopoulos, and Basilis Gatos. "Efficient Learning-Free Keyword Spotting." IEEE Transactions on Pattern Analysis and Machine Intelligence 41, no. 7 (July 1, 2019): 1587–600. http://dx.doi.org/10.1109/tpami.2018.2845880.
Full textLiu, Zuozhen, Ta Li, and Pengyuan Zhang. "Neural keyword confidence estimation for open‐vocabulary keyword spotting." Electronics Letters 58, no. 3 (November 27, 2021): 133–35. http://dx.doi.org/10.1049/ell2.12368.
Full textLopez-Espejo, Ivan, Zheng-Hua Tan, John H. L. Hansen, and Jesper Jensen. "Deep Spoken Keyword Spotting: An Overview." IEEE Access 10 (2022): 4169–99. http://dx.doi.org/10.1109/access.2021.3139508.
Full textRetsinas, George, Giorgos Sfikas, and Basilis Gatos. "Transferable Deep Features for Keyword Spotting." Proceedings 2, no. 2 (January 9, 2018): 89. http://dx.doi.org/10.3390/proceedings2020089.
Full textBrik, Youcef. "Mental model for handwritten keyword spotting." Journal of Electronic Imaging 27, no. 05 (October 4, 2018): 1. http://dx.doi.org/10.1117/1.jei.27.5.053027.
Full textYamashita, Yoichi, Daisuke Iwahashi, and Riichiro Mizoguchi. "Keyword spotting using F0 contour information." Systems and Computers in Japan 32, no. 7 (2001): 52–61. http://dx.doi.org/10.1002/scj.1041.
Full textKhan, Wasiq, and Rob Holton. "Decision Support System for Keyword Spotting Using Theory of Evidence." International Journal of Computer and Electrical Engineering 8, no. 1 (2016): 22–30. http://dx.doi.org/10.17706/ijcee.2016.8.1.22-30.
Full textRebai, Ilyes, Yassine BenAyed, and Walid Mahdi. "A novel keyword rescoring method for improved spoken keyword spotting." Procedia Computer Science 126 (2018): 312–20. http://dx.doi.org/10.1016/j.procs.2018.07.265.
Full textKanadje, Manish, Zachary Miller, Anurag Agarwal, Roger Gaborski, Richard Zanibbi, and Stephanie Ludi. "Assisted keyword indexing for lecture videos using unsupervised keyword spotting." Pattern Recognition Letters 71 (February 2016): 8–15. http://dx.doi.org/10.1016/j.patrec.2015.11.012.
Full textDissertations / Theses on the topic "Keyword spotting"
Skácel, Miroslav. "Query-by-Example Keyword Spotting." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234939.
Full textSunde, Valfridsson Jonas. "Query By Example Keyword Spotting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299743.
Full textRöstgränssnitt har växt i populäritet och med dem ett intresse för öppenvokabulärnyckelordsigenkänning. I den här uppsatsen fokuserar vi på en specifik form av öppenvokabulärnyckelordsigenkänning, den s.k nyckelordsigenkänning- genom- exempel. Tre typer av nyckelordsigenkänning- genom- exempel metoder beskrivs och utvärderas: sekvensavstånd, tal till fonem samt djupavståndsinlärning. Utvärdering görs på konstruerade uppgifter designade att mäta en mängd olika aspekter hos metoderna. Google Speech Commands data används för utvärderingen också, detta för att göra det mer jämförbart mot existerade arbeten. Från resultaten framgår det att djupavståndsinlärning verkar mest lovande förutom i miljöer där resurser är väldigt begränsade; i dessa kan sekvensavstånd vara av intresse. Tal till fonem metoderna visar brister i användningsuvärderingen.
Ling, Yong. "Keyword spotting in continuous speech utterances." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0024/MQ50822.pdf.
Full textLing, Yong 1973. "Keyword spotting in continuous speech utterances." Thesis, McGill University, 1999. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21595.
Full textPuigcerver, I. Pérez Joan. "A Probabilistic Formulation of Keyword Spotting." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/116834.
Full text[CAT] La detecció de paraules clau (Keyword Spotting, en anglès), aplicada a documents de text manuscrit, té com a objectiu recuperar els documents, o parts d'ells, que siguen rellevants per a una certa consulta (query, en anglès), indicada per l'usuari, dintre d'una gran col·lecció de documents. La temàtica ha recollit un gran interés en els últims 20 anys entre investigadors en Reconeixement de Formes (Pattern Recognition), així com biblioteques i arxius digitals. Aquesta tesi defineix l'objectiu de la detecció de paraules claus a partir d'una perspectiva basada en la Teoria de la Decisió i una formulació probabilística adequada. Més concretament, la detecció de paraules clau es presenta com un cas concret de Recuperació de la Informació (Information Retrieval), on el contingut dels documents és desconegut, però pot ser modelat mitjançant una distribució de probabilitat. A més, la tesi també demostra que, sota les distribucions de probabilitat correctes, el marc de treball desenvolupat condueix a la solució òptima del problema, segons diverses mesures d'avaluació utilitzades tradicionalment en el camp. Després, diferents models estadístics s'utilitzen per representar les distribucions necessàries: Xarxes Neuronal Recurrents i Models Ocults de Markov. Els paràmetres d'aquests són estimats a partir de dades d'entrenament, i les corresponents distribucions són representades mitjançant Transductors d'Estats Finits amb Pesos (Weighted Finite State Transducers). Amb l'objectiu de fer el marc de treball útil per a grans col·leccions de documents, es presenten distints algorismes per construir índexs de paraules a partir dels models probabilístics, tan basats en un lèxic tancat com en un obert. Aquests índexs són molt semblants als utilitzats per motors de cerca tradicionals. A més a més, s'estudia la relació que hi ha entre la formulació probabilística presentada i altres mètodes de gran influència en el camp de la detecció de paraules clau, destacant algunes limitacions dels segons. Finalment, totes les aportacions s'avaluen de forma experimental, no sols utilitzant proves acadèmics estàndard, sinó també en col·leccions amb desenes de milers de pàgines provinents de manuscrits històrics. Els resultats mostren que el marc de treball presentat permet construir sistemes de detecció de paraules clau molt acurats i ràpids, amb una sòlida base teòrica.
[EN] Keyword Spotting, applied to handwritten text documents, aims to retrieve the documents, or parts of them, that are relevant for a query, given by the user, within a large collection of documents. The topic has gained a large interest in the last 20 years among Pattern Recognition researchers, as well as digital libraries and archives. This thesis, first defines the goal of Keyword Spotting from a Decision Theory perspective. Then, the problem is tackled following a probabilistic formulation. More precisely, Keyword Spotting is presented as a particular instance of Information Retrieval, where the content of the documents is unknown, but can be modeled by a probability distribution. In addition, the thesis also proves that, under the correct probability distributions, the framework provides the optimal solution, under many of the evaluation measures traditionally used in the field. Later, different statistical models are used to represent the probability distribution over the content of the documents. These models, Hidden Markov Models or Recurrent Neural Networks, are estimated from training data, and the corresponding distributions over the transcripts of the images can be efficiently represented using Weighted Finite State Transducers. In order to make the framework practical for large collections of documents, this thesis presents several algorithms to build probabilistic word indexes, using both lexicon-based and lexicon-free models. These indexes are very similar to the ones used by traditional search engines. Furthermore, we study the relationship between the presented formulation and other seminal approaches in the field of Keyword Spotting, highlighting some limitations of the latter. Finally, all the contributions are evaluated experimentally, not only on standard academic benchmarks, but also on collections including tens of thousands of pages of historical manuscripts. The results show that the proposed framework and algorithms allow to build very accurate and very fast Keyword Spotting systems, with a solid underlying theory.
Puigcerver I Pérez, J. (2018). A Probabilistic Formulation of Keyword Spotting [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/116834
TESIS
Wang, Miaorong. "Algorithms and low power hardware for keyword spotting." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118035.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-76).
Keyword spotting (KWS) is widely used in mobile devices to provide hands-free interface. It continuously listens to all sound signals, detects specific keywords and triggers the downstream system. The key design target of a KWS system is to achieve high classification accuracy of specified keywords and have low power consumption while doing real-time processing of speech data. The algorithm based on convolutional neural network (CNN) delivers high accuracy with small model size that can be stored in on-chip memory. However, the state-of-the-art NN accelerators either target at complex tasks using large CNN models, e.g. AlexNet, or support limited neural network (NN) architectures which delivers lower classification accuracy for KWS. This thesis takes an algorithm-and-hardware co-design approach to implement a low power NN accelerator for the KWS system that is able to process CNN with flexible structures. On the algorithm side, we propose a weight tuning method that tweaks the bits of weights to lower the switching activity in the weight network-on-chip (NoC) and multipliers. The algorithm takes in 2's complement 8-bit original weights and outputs sign-magnitude 8-bit tuned weights. In our experiment, 60.96% reduction in the toggle count of weights is achieved with 0.75% loss in accuracy. On the hardware side, we implement a processing element (PE) to efficiently process the tuned weights. It takes in sign-magnitude weights and input activations, and multiplies them by an unsigned multiplier. An XOR gate is used to generate the sign bit of the product. The sign-magnitude product is converted back to 2's complement representation and accumulated using an adder-and-subtractor. The sign bit of the product is used as a carry bit to do the conversion. Comparing to the PE that processes original 2's complement weights, around 35% power reduction is observed. In the end, this thesis presents a CNN accelerator that consumes 1.2 mW when doing real-time processing of speech data with an accuracy of around 87.3% on Google speech command dataset [34].
by Miaorong Wang.
S.M.
Friesch, Pius. "Generating Training Data for Keyword Spotting given Few Samples." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254960.
Full textTaligenkänningssystem behöver generellt en stor mängd träningsdata med varierande röstoch inspelningsförhållanden för att ge robusta resultat. I det specifika fallet med nyckelordsidentifiering, där endast korta kommandon känns igen i stället för stora vokabulärer, måste resurskrävande datainsamling göras för varje sökord individuellt. Under de senaste åren har neurala metoder i talsyntes och röstkonvertering gjort stora framsteg och genererar tal som är realistiskt för det mänskliga örat. I det här arbetet undersöker vi möjligheten att använda sådana metoder för att generera träningsdata för nyckelordsidentifiering. I detalj vill vi utvärdera om det genererade träningsdatat verkligen är realistiskt eller bara låter så, och om en modell tränad på dessa genererade exempel generaliserar väl till verkligt tal. Vi utvärderade tre metoder för neural talsyntes och röstomvandlingsteknik: (1) Speaker Adaptive VoiceLoop, (2) Factorized Hierarchical Variational Autoencoder (FHVAE), (3) Vector Quantised-Variational AutoEncoder (VQVAE).Dessa tre metoder används för att antingen generera träningsdata från text (talsyntes) eller att berika ett befintligt dataset för att simulera flera olika talare med hjälp av röstkonvertering, och utvärderas i ett system för nyckelordsidentifiering. Modellernas prestanda jämförs med en baslinje baserad på traditionell signalbehandling där tonhöjd och tempo varieras i det ursprungliga träningsdatat. Experimenten visar att man med hjälp av neurala nätverksmetoder kan ge en upp till 20% relativ noggrannhetsförbättring på valideringsuppsättningen jämfört med ursprungligt träningsdata. Baslinjemetoden baserad på signalbehandling ger minst dubbelt så bra resultat. Detta tycks indikera att användningen av talsyntes eller röstkonvertering med flera talare inte ger tillräckligt varierade eller representativa träningsdata.
Zhang, Yaodong Ph D. Massachusetts Institute of Technology. "Unsupervised spoken keyword spotting and learning of acoustically meaningful units." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54655.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 103-106).
The problem of keyword spotting in audio data has been explored for many years. Typically researchers use supervised methods to train statistical models to detect keyword instances. However, such supervised methods require large quantities of annotated data that is unlikely to be available for the majority of languages in the world. This thesis addresses this lack-of-annotation problem and presents two completely unsupervised spoken keyword spotting systems that do not require any transcribed data. In the first system, a Gaussian Mixture Model is trained to label speech frames with a Gaussian posteriorgram, without any transcription information. Given several spoken samples of a keyword, a segmental dynamic time warping is used to compare the Gaussian posteriorgrams between keyword samples and test utterances. The keyword detection result is then obtained by ranking the distortion scores of all the test utterances. In the second system, to avoid the need for spoken samples, a Joint-Multigram model is used to build a mapping from the keyword text samples to the Gaussian component indices. A keyword instance in the test data can be detected by calculating the similarity score of the Gaussian component index sequences between keyword samples and test utterances. The proposed two systems are evaluated on the TIMIT and MIT Lecture corpus. The result demonstrates the viability and effectiveness of the two systems. Furthermore, encouraged by the success of using unsupervised methods to perform keyword spotting, we present some preliminary investigation on the unsupervised detection of acoustically meaningful units in speech.
by Yaodong Zhang.
S.M.
Narasimhan, Karthik Rajagopal. "Morphological segmentation : an unsupervised method and application to Keyword Spotting." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90139.
Full text26
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 41-44).
The contributions of this thesis are twofold. First, we present a new unsupervised algorithm for morphological segmentation that utilizes pseudo-semantic information, in addition to orthographic cues. We make use of the semantic signals from continuous word vectors, trained on huge corpora of raw text data. We formulate a log-linear model that is simple and can be used to perform fast, efficient inference on new words. We evaluate our model on a standard morphological segmentation dataset, and obtain large performance gains of up to 18.4% over an existing state-of-the-art system, Morfessor. Second, we explore the impact of morphological segmentation on the speech recognition task of Keyword Spotting (KWS). Despite potential benefits, state-of-the-art KWS systems do not use morphological information. In this thesis, we augment a KWS system with sub-word units derived by multiple segmentation algorithms including supervised and unsupervised morphological segmentations, along with phonetic and syllabic segmentations. Our experiments demonstrate that morphemes improve overall performance of KWS systems. Syllabic units, however, rival the performance of morphological units when used in KWS. By combining morphological and syllabic segmentations, we demonstrate substantial performance gains..
by Karthik Rajagopal Narasimhan.
S.M. in Computer Science and Engineering
Thambiratnam, Albert J. K. "Acoustic keyword spotting in speech with applications to data mining." Thesis, Queensland University of Technology, 2005. https://eprints.qut.edu.au/37254/1/Albert_Thambiratnam_Thesis.pdf.
Full textBooks on the topic "Keyword spotting"
Stauffer, Michael, Andreas Fischer, and Kaspar Riesen. Graph-Based Keyword Spotting. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/11452.
Full textBook chapters on the topic "Keyword spotting"
Moyal, Ami, Vered Aharonson, Ella Tetariy, and Michal Gishri. "Keyword Spotting Methods." In SpringerBriefs in Electrical and Computer Engineering, 7–11. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6489-1_2.
Full textMary, Leena, and Deekshitha G. "Keyword Spotting Techniques." In SpringerBriefs in Speech Technology, 45–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97761-4_4.
Full textVeiga, Arlindo, Carla Lopes, Luís Sá, and Fernando Perdigão. "Acoustic Similarity Scores for Keyword Spotting." In Lecture Notes in Computer Science, 48–58. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09761-9_5.
Full textBhardwaj, Anurag, Srirangaraj Setlur, and Venu Govindaraju. "Keyword Spotting Techniques for Sanskrit Documents." In Lecture Notes in Computer Science, 403–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00155-0_22.
Full textMoyal, Ami, Vered Aharonson, Ella Tetariy, and Michal Gishri. "Keyword Spotting Out of Continuous Speech." In SpringerBriefs in Electrical and Computer Engineering, 1–6. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6489-1_1.
Full textAyed, Yassine Ben, Dominique Fohr, Jean Paul Haton, and Gérard Chollet. "Keyword Spotting Using Support Vector Machines." In Text, Speech and Dialogue, 285–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46154-x_39.
Full textSfikas, Giorgos, George Retsinas, Angelos P. Giotis, Basilis Gatos, and Christophoros Nikou. "Keyword Spotting with Quaternionic ResNet: Application to Spotting in Greek Manuscripts." In Document Analysis Systems, 382–96. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06555-2_26.
Full textLleida, E., J. B. Mariño, J. Salavedra, and A. Moreno. "Keyword Spotting, an Application for Voice Dialing." In Speech Recognition and Coding, 276–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57745-1_40.
Full textGreibus, Mindaugas, and Laimutis Telksnys. "Speech Keyword Spotting with Rule Based Segmentation." In Communications in Computer and Information Science, 186–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41947-8_17.
Full textGales, Mark J. F., Kate M. Knill, and Anton Ragni. "Low-Resource Speech Recognition and Keyword-Spotting." In Speech and Computer, 3–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66429-3_1.
Full textConference papers on the topic "Keyword spotting"
Haznedaroglu, Ali, Osman Buyuk, and Levent M. Arslan. "Keyword Spotting using Keyword Adapted Language Model." In 2007 15th IEEE Signal Processing and Communications Applications. IEEE, 2007. http://dx.doi.org/10.1109/siu.2007.4298570.
Full textChen, Qiyu, Weibin Zhang, Xiangmin Xu, and Xiaofen Xing. "Improved keyword spotting based on keyword/garbage models." In 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2016. http://dx.doi.org/10.1109/apsipa.2016.7820743.
Full textLi, L., S. J. Lu, and C. L. Tan. "A Fast Keyword-Spotting Technique." In Ninth International Conference on Document Analysis and Recognition (ICDAR 2007). IEEE, 2007. http://dx.doi.org/10.1109/icdar.2007.4378677.
Full textBahi, Halima, and Nadia Benati. "A new keyword spotting approach." In 2009 International Conference on Multimedia Computing and Systems (ICMCS). IEEE, 2009. http://dx.doi.org/10.1109/mmcs.2009.5256728.
Full textHuh, Jaesung, Minjae Lee, Heesoo Heo, Seongkyu Mun, and Joon Son Chung. "Metric Learning for Keyword Spotting." In 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021. http://dx.doi.org/10.1109/slt48900.2021.9383571.
Full textLeroy, David, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. "Federated Learning for Keyword Spotting." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683546.
Full textOdame, Kofi, and Maria Nyamukuru. "Analog LSTM for Keyword Spotting." In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2022. http://dx.doi.org/10.1109/aicas54282.2022.9869922.
Full textJose, Christin, Joe Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, and Brian Kulis. "Latency Control for Keyword Spotting." In Interspeech 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/interspeech.2022-10608.
Full textNarasimhan, Karthik, Damianos Karakos, Richard Schwartz, Stavros Tsakalidis, and Regina Barzilay. "Morphological Segmentation for Keyword Spotting." In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. http://dx.doi.org/10.3115/v1/d14-1095.
Full textShen, Wenzhu, Ji Wu, and Wei Li. "Web-based keyword adapted Language Modeling for Keyword Spotting." In 2010 7th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2010. http://dx.doi.org/10.1109/iscslp.2010.5684898.
Full textReports on the topic "Keyword spotting"
Mitra, Vikramjit, Julien van Hout, Horacio Franco, Dimitra Vergyri, Yun Lei, Martin Graciarena, Yik-Cheung Tam, and Jing Zheng. Feature Fusion for High-Accuracy Keyword Spotting. Fort Belvoir, VA: Defense Technical Information Center, May 2014. http://dx.doi.org/10.21236/ada613972.
Full textHansen, John H. Robust Speech Processing & Recognition: Speaker ID, Language ID, Speech Recognition/Keyword Spotting, Diarization/Co-Channel/Environmental Characterization, Speaker State Assessment. Fort Belvoir, VA: Defense Technical Information Center, October 2015. http://dx.doi.org/10.21236/ada623029.
Full text