Academic literature on the topic 'Kimberlite pipes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kimberlite pipes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kimberlite pipes"
Kargin, Alexey Vladimirovich, Anna Andreevna Nosova, Ludmila Vyacheslavovna Sazonova, Vladimir Vasilievich Tretyachenko, Yulia Olegovna Larionova, and Elena Vladimirovna Kovalchuk. "Ultramafic Alkaline Rocks of Kepino Cluster, Arkhangelsk, Russia: Different Evolution of Kimberlite Melts in Sills and Pipes." Minerals 11, no. 5 (May 19, 2021): 540. http://dx.doi.org/10.3390/min11050540.
Full textKopylova, Maya G., and Patrick Hayman. "Petrology and textural classification of the Jericho kimberlite, northern Slave Province, Nunavut, Canada." Canadian Journal of Earth Sciences 45, no. 6 (June 2008): 701–23. http://dx.doi.org/10.1139/e08-011.
Full textNewton, David E., Amy G. Ryan, and Luke J. Hilchie. "Competence and lithostratigraphy of host rocks govern kimberlite pipe morphology." Canadian Journal of Earth Sciences 55, no. 2 (February 2018): 130–37. http://dx.doi.org/10.1139/cjes-2017-0019.
Full textYakovlev, Evgeny Yu. "Features of radioactive element distribution within the Arkhangelsk diamondiferous province: possible directions for development of isotope–radiogeochemical methods for kimberlite prospecting in complex landscape–geology and climate conditions of the subarctic zone." Geochemistry: Exploration, Environment, Analysis 20, no. 3 (July 3, 2019): 269–79. http://dx.doi.org/10.1144/geochem2019-023.
Full textAzarova, N. S., A. V. Bovkun, V. K. Garanin, D. A. Varlamov, and H. L. Hong. "Oxide minerals of Kaavi kimberlites (Finland)." Proceedings of higher educational establishments. Geology and Exploration, no. 5 (November 28, 2019): 36–49. http://dx.doi.org/10.32454/0016-7762-2019-5-36-49.
Full textRussell, J. Kelly, R. Stephen J. Sparks, and Janine L. Kavanagh. "Kimberlite Volcanology: Transport, Ascent, and Eruption." Elements 15, no. 6 (December 1, 2019): 405–10. http://dx.doi.org/10.2138/gselements.15.6.405.
Full textYakovlev, Evgeny, and Andrey Puchkov. "Radon over Kimberlite Pipes: Estimation of the Emanation Properties of Rocks (Lomonosov Diamond Deposit, NW Russia)." Applied Sciences 11, no. 13 (June 29, 2021): 6065. http://dx.doi.org/10.3390/app11136065.
Full textSerebryakov, E. V., A. S. Gladkov, and D. A. Koshkarev. "Three‐dimensional structural‐material models of the formation of the Nyurbinskaya and Botuobinskaya kimberlite pipes (Yakutian Diamondiferous Province, Russia)." Geodynamics & Tectonophysics 10, no. 4 (December 11, 2019): 899–920. http://dx.doi.org/10.5800/gt-2019-10-4-0448.
Full textSmith, Richard S., A. Peter Annan, Jean Lemieux, and Rolf N. Pedersen. "Application of a modified GEOTEM® system to reconnaissance exploration for kimberlites in the Point Lake area, NWT, Canada." GEOPHYSICS 61, no. 1 (January 1996): 82–92. http://dx.doi.org/10.1190/1.1443959.
Full textAfanasiev, V. P., E. I. Nikolenko, N. V. Glushkova, and I. D. Zolnikov. "The new Massadou diamondiferous kimberlite field in Guinea." Геология рудных месторождений 61, no. 4 (August 13, 2019): 92–100. http://dx.doi.org/10.31857/s0016-777061492-100.
Full textDissertations / Theses on the topic "Kimberlite pipes"
van, Straaten Bram Ivo. "The eruption of kimberlite : insights from the Victor North kimberlite pipes, Northern Ontario, Canada." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/29569.
Full textStiefenhofer, Johann. "The petrography, mineral chemistry and isotope geochemistry of a mantle xenolith suite from the Letlhakane DK 1 and DK 2 kimberlite pipes, Botswana." Thesis, Rhodes University, 1994. http://hdl.handle.net/10962/d1005600.
Full textHamman, Jurgens Petrus Eden. "Geotechnical assessment of a kimberlite pipe in Greenstone belt granites." Diss., University of Pretoria, 2008. http://hdl.handle.net/2263/24842.
Full textDissertation (MSc)--University of Pretoria, 2008.
Mining Engineering
unrestricted
Ramokgaba, Lesego. "Geochemistry and petrogenesis of kimberlite intrusions from the eastern lobe the Du Toitspan kimberlite pipe, South Africa." Master's thesis, University of Cape Town, 2020. http://hdl.handle.net/11427/32534.
Full textHops, Jennifer Jane. "Some aspects of the geochemistry of high-temperature peridotites and megacrysts from the Jagersfontein kimberlite pipe, South Africa." Doctoral thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/22415.
Full textThe Jagersfontein kimberlite contains an abundance of both deformed high-temperature peridotites and Cr-poor megacrysts. The Cr-poor megacryst suite is represented by olivine, orthopyroxene, clinopyroxene and garnet. The megacrysts show features which are unique to Jagersfontein, a particularly notable feature being the absence of ilmenite and ilmenite-silicate intergrowths. Major element and REE compositions of the Cr-poor megacryst suite are consistent with a magmatic fractionation sequence. ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios of the Cr-poor clinopyroxene megacrysts indicate a source similar to that of non-DUPAL ocean island basalts. Deformed peridotites at Jagersfontein have high calculated temperatures of equilibration (1132-1361°C), which are slightly lower but which overlap with those of the Cr-poor megacryst suite. Both the high-temperature peridotites and the Cr-poor megacrysts yield similar pressures of equilibration (51±2 kbar), indicating their association with a thermal perturbation and supporting a close spatial association between them. Olivine and pyroxenes in the high-temperature peridotites appear homogeneous, but compositional gradients were observed in several garnet porphyroclasts. These garnets show rim enrichments in TiO₂ and Na₂O. This zonation in the garnets is evidence for enrichment of the deformed peridotites shortly before kimberlite eruption. This enrichment is likely to be due to interaction with the megacryst magma. In addition, the high-temperature peridotites show a general enrichment in Fe, Ti, Na and Al with decreasing Ca/(Ca+Mg). Such features support a magmatic aureole model, in that temperature and degree of enrichment might be expected to increase with proximity to the megacryst magma body. ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios of clinopyroxene separates from the high-temperature peridotites are similar to those from oceanic peridotites. Modal abundances and olivine forsterite contents of the high-temperature peridotites are consistent with an origin as residues of partial melting events involving basalt formation. It is suggested that partial melting events, in the upper mantle beneath Jagersfontein, resulted in the formation of a depleted protolith which underplated the base of the Archaean lithosphere. This depleted protolith was subsequently enriched by interaction with the Cr-poor megacryst magma just prior to kimberlite eruption. The high-temperature peridotites therefore represent samples from the base of the lithosphere rather than from the convecting asthenosphere.
Muusha, Miracle. "A geological study of the River Ranch kimberlite pipe and associated diamonds and mantle minerals : Limpopo Mobile Belt, Zimbabwe." Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/20191.
Full textThe River Ranch kimberlite is a 5.2 hectare diatreme from which the original surficial crater facies material has been removed by erosion. Proof of the prior existence of such a feature is provided by down rafted blocks of epiclastic and pyroclastic rocks exposed in the diatreme during open pit mining operations. Six intrusive kimberlite phases have been recognised in the diatreme by careful mapping and confirmed by petrographic observations, particularly variations in groundmass mineralogy. Subsequent to emplacement, the diatreme has been cut by intrusive tholeitic dolerites of apparently Karoo age. The River Ranch occurrence is classified as a Group I kimberlite although the definitive isotopic evidence is lacking due to pervasive alteration of the exposed rocks. The absence of megacrystic and groundmass ilmenite and the presence of groundmass diopside are unusual for the group of rocks. However the presence of monticellite and the low abundance of phlogopite argue against a Group II classification. The overwhelmingly peridotitic nature of the mantle mineral macrocrysts in the kimberlite is consistent with the observations of Kopylova et al (1995) that the diamonds at River Ranch are predominantly peridotitic and are likely to have formed in a single process. The approximate equilibration temperature for a small suite of coarse grained lherzolite from the kimberlites is 1200°C, suggesting a geothermal gradient rather higher than seen in the Kaap-Vaal craton. The diamonds at River Ranch are predominantly brown, strongly resorbed and have less than average value. It is predicted that a combination of kimberlite petrography, micro-diamond measurements and mantle macrocryst studies should be a valuable aid to grade control and mine planning.
Trickett, Susannah Kay. "Mapping lithofacies within the D/K1 kimberlite pipe at Letlhakane, Botswana : an assessment of petrographic, geochemical and mineralogical indicators." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1445971/.
Full textRobles-Stefoni, Lucia. "Critical analysis of multiple-points statistics methods in the stochastic simulation of geology at Fox Kimberlitic Diamond Pipe located on the Ekati Property, North West Territories." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66953.
Full textLes méthodes de simulation multi-points ont été développées au cours de la dernière décennie afin de générer des simulations stochastiques reproduisant des structures géologiques complexes, comme par exemple des dépôts en veines à hautes teneurs, des groupes de formations lenticulaires à hautes teneurs, ou les géométries spatiales et structures de gisements diamantifères de kimberlite.Cette thèse compare deux méthodes multi-points pour modéliser la géologie d'un gisement diamantifère situé dans la mine Ekati, dans les Territoires du Nord-Ouest du Canada. Les algorithmes de simulation SNESIM, capturant les structures d'une image d'entraînement, et FILTERSIM, classant les structures trouvées sur une image d'entraînement, sont considérés dans cette étude et utilisés pour générer des simulations stochastiques d'un modèle à quatre catégories : cratère, diatrème, xénolites et roches hôtes. On utilise aussi des informations qualitatives sur la position de la roche hôte. Les deux méthodes reproduisent la géométrie du gisement de manière satisfaisante, conformément à l'image d'entraînement utilisée (le cratère et les diatrèmes); cependant, les méthodes donnent des résultats différents quant à la proportion et la position des corps de xénolite dans le gisement. La validation des résultats des simulations par les méthodes mentionnées ci-dessus montre une reproduction raisonnable des proportions pour chaque catégorie considérée, mais la validation des statistiques spatiales montre que, même si les simulations produites par les deux méthodes reproduisent les statistiques d'ordre quatre de l'image d'entraînement, elles ne reproduisent pas celles des données disponibles (lorsque ces statistiques diffèrent de celles de l'image d'entraînement). Il est intéressant de noter que SNESIM reproduit mieux la forme du gisement, tandis que FILTERSIM permet une me
Mjimba, Nqangi. "Geostatistical modelling and simulation of uncertainty of a kimberlite pipe." Thesis, 2014.
Find full textSheng, Ankar Rockwell. "Petrography, mineralogy, geochemistry and geochronology of the diamondiferous Drybones Bay kimberlite Pipe and Mud lake kimberlite dyke, Northwest Territories." 2016. http://hdl.handle.net/1993/31856.
Full textOctober 2016
Books on the topic "Kimberlite pipes"
Book chapters on the topic "Kimberlite pipes"
Milashev, Vladimir A. "Kimberlite Magma Chambers." In Explosion Pipes, 98–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_10.
Full textMilashev, Vladimir A. "Morphology of Kimberlite Bodies." In Explosion Pipes, 3–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_1.
Full textMilashev, Vladimir A. "Contact Effects of Kimberlite." In Explosion Pipes, 41–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_4.
Full textMilashev, Vladimir A. "Chronology of Kimberlite Formation." In Explosion Pipes, 66–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_7.
Full textMilashev, Vladimir A. "Internal Structure of Kimberlite Bodies." In Explosion Pipes, 12–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_2.
Full textMilashev, Vladimir A. "Distribution of Xenoliths and Minerals in Kimberlite Pipes." In Explosion Pipes, 27–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_3.
Full textMilashev, Vladimir A. "Structural Control of Kimberlite Occurrence and Factors of its Localization." In Explosion Pipes, 77–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_8.
Full textMilashev, Vladimir A. "Temporal and Spatial Rules in the Magmatic History of Kimberlite Fields." In Explosion Pipes, 92–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_9.
Full textMilashev, Vladimir A. "Size of Diatremes and Distribution of Bodies of Variable Sizes in Kimberlite Fields." In Explosion Pipes, 47–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73258-4_5.
Full textMoss, Stephen, Kimberley Webb, Casey Hetman, and Ammiel Manyumbu. "Geology of the K1 and K2 Kimberlite Pipes at Murowa, Zimbabwe." In Proceedings of 10th International Kimberlite Conference, 35–50. New Delhi: Springer India, 2013. http://dx.doi.org/10.1007/978-81-322-1173-0_3.
Full textConference papers on the topic "Kimberlite pipes"
Tyler, Duncan, and S. Godden. "Geotechnical Modelling for Kimberlite Pipes." In First Southern Hemisphere International Rock Mechanics Symposium. Australian Centre for Geomechanics, Perth, 2008. http://dx.doi.org/10.36487/acg_repo/808_159.
Full textOparin, Nikolay. "CHROMOSPINELLIDES FROM KIMBERLITE PIPES FROM THE CENTRAL YAKUTIA." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/1.1/s01.011.
Full textFitzGerald, D., and T. Meyer. "Improvements in Search Techniques to Detect Kimberlite Pipes." In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900964.
Full textOparin, Nikolay. "BARIUM PHLOGOPITE FROM KIMBERLITE PIPES OF CENTRAL YAKUTIA." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/1.1/s01.003.
Full textHamilton, M. P., and S. J. Webb. "Delineation of kimberlite pipes using ground geophysical techniques: A Case Study of two kimberlites near Kimberley, South Africa." In 8th SAGA Biennial Technical Meeting and Exhibition. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.144.37.
Full textSaraev, A. K., M. I. Pertel, and YU G. Podmogov. "Possibilities of the AMTS when searches of kimberlite pipes in complicated geological conditions." In Geophysics of the 21st Century - The Leap into the Future. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.38.f268.
Full textMorris, Bill, George Leblanc, and Lud Prevec. "An alternative simple procedure to identify magnetic and other geophysical anomalies due to kimberlite pipes." In SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 2002. http://dx.doi.org/10.1190/1.1817355.
Full textNielsen, Holger Bech, and C. Froggatt. "Kimberlite Pipes from Impacts of Dark Matter being (Ordinary) Matter Compactified into Bubles before BBN." In Proceedings of the Corfu Summer Institute 2015. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.263.0021.
Full textDavidenko, Y. A., M. G. Persova, A. V. Novopashina, D. V. Bogdanovich, and P. A. Popkov. "The Use of 3D Approach for EMS-IP Technology Data Processing in Search of Kimberlite Pipes." In Near Surface Geoscience 2016 - First Conference on Geophysics for Mineral Exploration and Mining. Netherlands: EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201602105.
Full textYakymchuk, N. A., S. P. Levashov, and I. N. Korchagin. "Studying the deep structure of kimberlite pipes by the results of remote sensing data frequency-resonance processing." In 18th International Conference on Geoinformatics - Theoretical and Applied Aspects. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902016.
Full textReports on the topic "Kimberlite pipes"
Averill, S. A., and M. B. McClenaghan. Distribution and character of kimberlite indicator minerals in glacial sediments, C14 and Diamond Lake kimberlite pipes, Kirkland Lake, Ontario. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1994. http://dx.doi.org/10.4095/193980.
Full textStasiuk, L. D., and W. W. Nassichuk. Thermal data from petrographic analysis of organic matter in kimberlite pipes, Lac de Gras, N.W.T. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1996. http://dx.doi.org/10.4095/211726.
Full textStasiuk, L. D., and W. W. Nassichuk. Thermal history and petrology of wood and other organic inclusions in kimberlite pipes at Lac de Gras, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/202804.
Full text