Academic literature on the topic 'Kineticі of sucrose hydrolysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kineticі of sucrose hydrolysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kineticі of sucrose hydrolysis"
Li, Dongmei, Chaofan Weng, Yi Ruan, Kan Li, Guoan Cai, Chenyao Song, and Qiang Lin. "An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis." Sensors 21, no. 3 (February 2, 2021): 1003. http://dx.doi.org/10.3390/s21031003.
Full textHargono, Hargono, Bakti Jos, Abdullah Abdullah, and Teguh Riyanto. "Inhibition Effect of Ca2+ Ions on Sucrose Hydrolysis Using Invertase." Bulletin of Chemical Reaction Engineering & Catalysis 14, no. 3 (December 1, 2019): 646. http://dx.doi.org/10.9767/bcrec.14.3.4437.646-653.
Full textGao, Daming, Takashi Kobayashi, and Shuji Adachi. "Kinetics of Sucrose Hydrolysis in a Subcritical Water-ethanol Mixture." Journal of Applied Glycoscience 61, no. 1 (2014): 9–13. http://dx.doi.org/10.5458/jag.jag.jag-2013_006.
Full textKeramat, Ali, Ali Kargari, Morteza Sohrabi†, Hamed Mirshekar, and Hamidreza Sanaeepur. "Kinetic Model for Invertase-Induced Sucrose Hydrolysis: Initial Time Lag." Chemical Engineering & Technology 40, no. 3 (February 10, 2017): 529–36. http://dx.doi.org/10.1002/ceat.201400389.
Full textAbdullah, A., Hanapi Bin Mat, and W. Widayat. "Kinetic study of the utilisation of different substrates to lactic acid using Lactobacillus delbrueckii." Jurnal Teknik Kimia Indonesia 4, no. 1 (October 7, 2018): 153. http://dx.doi.org/10.5614/jtki.2005.4.1.4.
Full textHartofylax, V. H., C. E. Efstathiou, and T. P. Hadjiioannou. "Kinetic study of the acid hydrolysis of sucrose and lactose and kinetic determination of sucrose using a periodate-selective electrode." Analytica Chimica Acta 224 (1989): 159–68. http://dx.doi.org/10.1016/s0003-2670(00)86556-3.
Full textTORRES, A. PINHEIRO, F. A. R. OLIVEIRA, C. L. M. SILVA, and S. P. FORTUNA. "THE INFLUENCE of pH ON the KINETICS of ACID HYDROLYSIS of SUCROSE." Journal of Food Process Engineering 17, no. 2 (May 1994): 191–208. http://dx.doi.org/10.1111/j.1745-4530.1994.tb00335.x.
Full textTang, Peng, Yetao Shu, Zhaoxin Wen, Yifei Song, Shuoqing Liu, Ting Wan, and Zhaoming Luo. "High-Resolution Determination of Kinetic Parameters of Sucrose Hydrolysis Based on Weak Measurement." IEEE Photonics Journal 14, no. 1 (February 2022): 1–6. http://dx.doi.org/10.1109/jphot.2022.3142072.
Full textNathalie Jarroux, Marie-Jeanne Clément, Cedric Przybylski, Olek Maciejak, Patrick A. Curmi, and Hervé M. Cheradame. "Catalysis and specificity of the polycondensation of aminopropyltrimethoxysilane on nucleic acids." GSC Biological and Pharmaceutical Sciences 13, no. 2 (November 30, 2020): 290–99. http://dx.doi.org/10.30574/gscbps.2020.13.2.0332.
Full textHernandez, L., J. Arrieta, C. Menendez, R. Vazquez, A. Coego, V. Suarez, G. Selman, M. F. Petit-Glatron, and R. Chambert. "Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane." Biochemical Journal 309, no. 1 (July 1, 1995): 113–18. http://dx.doi.org/10.1042/bj3090113.
Full textDissertations / Theses on the topic "Kineticі of sucrose hydrolysis"
Лебедєв, Сергій Юрійович, Сергей Юрьевич Лебедев, Serhii Yuriiovych Lebediev, and А. С. Кулиш. "Математическая модель кинетики гидролиза сахарозы." Thesis, Изд-во СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/5320.
Full textЛебедєв, Сергій Юрійович, Сергей Юрьевич Лебедев, Serhii Yuriiovych Lebediev, Т. А. Хижняк, and А. С. Кулиш. "Изучение кинетики гидролиза сахарозы. Влияние природы кислоти." Thesis, Издательство СумГУ, 2007. http://essuir.sumdu.edu.ua/handle/123456789/18960.
Full textМосьпан, А. Б., Сергій Юрійович Лебедєв, Сергей Юрьевич Лебедев, and Serhii Yuriiovych Lebediev. "Изучение кинетики гидролиза сахарозы. Экспериментальное определение энергии и энтропии активации." Thesis, Сумский государственный университет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/39719.
Full textЛебедєв, Сергій Юрійович, Сергей Юрьевич Лебедев, Serhii Yuriiovych Lebediev, and А. С. Кулиш. "Изучение кинетики гидролиза сахарозы в присутствии бромистоводородной кислоты." Thesis, Издательство СумГУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/5401.
Full textNolasco, Junior Jonas. "Desenvolvimento de processo termico otimizado para mosto de caldo de cana na fermentação alcoolica." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255406.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-04T02:36:41Z (GMT). No. of bitstreams: 1 NolascoJunior_Jonas_M.pdf: 917952 bytes, checksum: 1c082a25920f5c8390a73425551d86ef (MD5) Previous issue date: 2005
Resumo: Nesta pesquisa é proposto um processo de tratamento térmico do mosto, com máxima preservação do conteúdo em açúcares fermentescíveis (sacarose, glicose e frutose), a fim de promover a inativação térmica de seus contaminantes bacterianos e por extensão os da fermentação alcoólica. Com esse objetivo foram examinadas as cinéticas de degradação térmica da sacarose, glicose, frutose e açúcares redutores totais (ART) (110 ¿ 140ºC) e também dos esporos de B. stearothermophilus (98 ¿ 130ºC), esporulado termo-resistente contaminante típico de mosto. Todos os fatores termodegradáveis estudados apresentaram cinéticas de destruição térmicas não-lineares de forma que o índice de redução decimal (D), obtido por regressão linear, não foi representativo da velocidade de inativação térmica, e assim as cinéticas foram analisadas mediante modelos não lineares que permitiram obter as constantes de velocidade de inativação (k). Seguidamente utilizando um gráfico tipo Arrhenius a energia de ativação Ea foi determinada e o valor de z foi obtido. As curvas de sacarose remanescentes obtidas durante estudo da sua hidrólise térmica, foram ajustadas por modelos logísticos que se mostraram apropriados para descrever ombros planos e caudas finais nas curvas cinéticas. A energia de ativação e valor z obtidos foram 112,32 kJ/mol e 26,99ºC, respectivamente. Essa reação se mostrou praticamente equimolecular quanto às hexoses produzidas. As curvas de concentração de ART vs tempo remanescentes foram ajustadas por modelos logísticos bipopulacionais, apropriados em casos em que o processo global é descrito por duas frações de compostos, as hexoses glicose e frutose, que se degradam em velocidades diferentes e apresentam ombros e caudas. Os valores de energia de ativação obtidos para a frutose e glicose foram bem próximas: 140,37 kJ/mol e 140,23 kJ/mol, respectivamente. Os valores z obtidos foram 21,59ºC e 21,61ºC. Quanto às velocidades de degradação a frutose apresentou velocidade 9 vezes maior do que a da glicose. A suspensão de esporos se mostrou heterogênea em resistência. A temperatura influenciou a forma das curvas de sobreviventes, para os esporos de B. stearothermophilus ATCC1518. Nas temperaturas mais baixas, as curvas de inativação térmica apresentaram ombro plano, passando por comportamento de modelos de frações lineares consecutivas, e finalmente na temperatura mais elevada apresentou modelo linear com eliminação da fração termo-sensível. Os valores de energia de ativação e z obtidos foram 249,52 kJ/mol e 11,48ºC, respectivamente. O processo térmico para inativação dos contaminantes do mosto foi definido após o decantador, onde foram quantificados grandes grupos microbianos em amostras coletadas de Usinas situadas em regiões de clima e umidade distintas. A concentração máxima de esporos termofílicos produtores de acidez plana foi de 9x101esporos/ml de mosto em Usina localizada em região quente e úmida enquanto um valor de 4 esporos/ml de mosto foi encontrado em Usina localizada em região de clima seco e com predominância de solo com baixa capacidade de retenção de água. Foi determinada a letalidade do processo de decantação para os contaminantes do caldo de cana e mosto através da determinação da história térmica mínima detectada no ponto mais frio de dois decantadores industriais. Baseado no tempo de residência médio e na temperatura mais fria detectada foi possível estimar que a decantação produz, em média, 4,0 x 106 reduções decimais da população de Lactobacillus fermentum e apenas 0,14 reduções decimais nos esporos de B. stearothermophilus. Baseado no conhecimento da cinética dos principais fatores termodegradáveis foi definida uma região de tratamento térmico que se extende dos 114 a 140ºC e de 3000 a 4 segundos. Graficamente essa região é um triangulo delimitado, abaixo pela reta correspondente a 5 reduções decimais dos esporos de B. stearothermophilus e acima pela reta correspondente à preservação de 98,7% dos ART do mosto. O nível de preservação de 98,7% dos ART foi escolhido pela precisão das análises usadas na determinação dos mesmos (1,3%). Qualquer processo térmico dentro dessa região será capaz de satisfazer o requisito de 5 reduções decimais dos esporos de B. stearothermophilus e preservação de 98,7% dos ART do mosto. A prática desse processo térmico implica na adoção de uma estratégia preventiva no controle da contaminação da fermentação em oposição às estratégias corretivas baseadas no uso de antibióticos que se pratica nas Usinas de Açúcar e Álcool Brasileiras
Abstract: In this research is proposed a thermal treatment process for sugar cane must with maximum retention of fermentable sugar (sucrose, glucose and fructose), to promote a thermal inactivation of its bacterial contaminants and therefore, those of alcoholic fermentation. With this objective were examined the thermo degradation kinetics of sucrose, glucose, fructose, total reducing sugars (TRS) (110 ¿ 140ºC) and also B. stearothermophilus spores (98 ¿ 130ºC), a typical thermo resistant sporulated contaminant of musts. All thermo degradable factors showed non-linear thermal destruction kinetics due to this the D value, obtained for linear regression, could not be used, thus the kinetics were reported by Arrhenius model, obtaining the reaction rates (k), Activation Energy (Ea) and the z value through out Ea values. Sucrose remaining curves obtained as a function of time during its thermal hydrolysis, were fitted by logistic models which are suitable to describe flat shoulders and ending tales in the kinetic curves. Activation Energy and z value were 112,32 kJ/mol and 26,99°C, respectively. This reaction showed to be equimolecular in regard to the produced hexoses. TRS remaining curves vs time were adjusted by logistic bipopulational models, suitable when the overall process presents two fractions, the hexoses glucose and fructose, with different degradation rates with shoulders and tales. Ea and z values for fructose and glucose were quite close: 140,37 kJ/mol, z of 21,59°C and 140,23 kJ/mol, z of 21,61°C, respectively. As far as degradation rates are concerned, fructose showed to degrade 9 times faster than glucose. Spores suspension showed heterogeneity in thermal resistance. Temperature affected the shape of survival curves for B. stearothermophilus ATCC1518 spores. At lower temperatures, it showed flat shoulder, passing through consecutive linear fraction models behaviors, and finally at higher temperatures followed linear model with elimination of the thermo-sensible fraction. Ea and z values were 249,52 kJ/mol and 11,48°C respectively. A thermal process for sugar cane must contaminant inactivation was defined after the decanter, where microbiological quantification of various microbial groups was carried out on samples from sugar cane mills located in region with different climate and humidity conditions. The maximum thermophilic flat-sour spores count was of 9 x 101 spores/ml of must and was originated from a sugar cane mill located at the warmest and most humid region, while a count of 4 spores/ml of must was found in a plant with dry climate and with soil of low capability for water retention. Decanters lethality of must contaminant was determined based on the minimum detected thermal history in two industrial equipments. Applying the average residence time with this thermal history, it was estimated that the decantation results, on average, 4,02*106 log reductions of Lactobacillus fermentum and only 0,13 log reductions in the counting of B. stearothermophilus spores. Based on the kinetic knowledge of the thermo degradable major factors it was established a thermal process region from 114 to 140C and 3000 to 4 seconds. Graphically, this region is a triangle delimited by the line for 5 log reductions of B. stearothermophilus (lower limit), and the line for 98,7% retention of the must TRS. This preservation level was adopted considering the accuracy of the sugar analysis methodology (1,3%). Any thermal process within this region will be able to satisfy the requirement of 5 log reductions for B. stearothermophilus and 98,7% retention of must TRS. The implementation of this thermal process implies in the adoption of a preventive strategy in the contamination control of the fermenting process, opposite to the corrective strategies currently applied based on antibiotics, which is common practice in Brazilian Sugar Canes mills
Mestrado
Ciência de Alimentos
Mestre em Ciência de Alimentos
Rose, Susan 1977. "Sucrose accumulation and the expression of neutral invertase in sugarcane." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52468.
Full textENGLISH ABSTRACT: The goals of this project were to (i) determine maximum extractable neutral invertase (NI) activity in the sugarcane culm, (ii) sequence a cDNA encoding for the sugarcane NI (SNI), (iii) determine SNI copy number in the genome, (iv) describe SNI transcript and protein expression patterns throughout the plant, and (v) attempt to determine the contribution of hydrolysis to sucrose accumulation. SNI and sugars were extracted from the developing culm tissues of sugarcane, commercial variety N19. Tissues were divided according to developmental stage (internodes 3, 6 and 9) and anatomical differentiation (enriching for elongating, vascular or storage tissues). The lowest sucrose content was found in the core of the bottom of each of the internodes. The ratio between hexoses and sucrose was highest in the young internodes. In these internodes hexose content was higher in the bottom than the top. There was a significant correlation between sucrose content and NI. Fluxes involved in sucrose synthesis and hydrolysis were investigated. The hexoses glucose and fructose were supplied as a carbon source for tissue discs of young and maturing internodal tissues of sugarcane, varieties N19 and US6656-15. Sucrose content was 10-fold higher in maturing internodes of N19 than US6656-15. Calculated sucrose hydrolysis rates via invertase were higher in maturing internodes of US6656-15 than N19. Taking metabolic compartmentation into account, hydrolysis of sucrose via invertase made a significant contribution to the net turnover of sucrose. Along with this, it would appear that the ability to partition sucrose between the vacuole and cytosol causes a significant difference in sucrose content between varieties. A full-length cDNA for SNI was sequenced. This expressed gene showed significant homology to known NI sequences on both nucleic and amino acid levels. The SNI sequence did not contain the putative invertase catalytic amino acid sequence, suggesting it developed separately from the other classes of invertases. Approximately 1.8 kb of the SNI cDNA was incorporated into a vector suitable for direct bombardment into sugarcane tissue. Southern blot analysis showed the enzyme has a low copy number. SNI transcript expression was observed in all tissues of the sugarcane plant: roots, internodes, leaf roll and leaves. In culm tissues where sucrose content was low and hexose contents were high, SNI transcript and protein levels were high. This suggests that SNI is involved in growth metabolism.
AFRIKAANSE OPSOMMING: Die doel van die projek was om (i) maksimum ekstaheerbare neutrale invertase (NI) aktiwiteit in die suikerriet stingel te bepaal, (ii) die volgorde van 'n eDNA wat vir suikerriet NI (SNI) kodeer te bepaal, (iii) die SNI kopie-getal in die genoom te bepaal, (iv) SNI m- RNA en proteïenuitdrukkingspatrone deur die plant te beskryf, en (v) te poog om die bydrae van hidrolise op sukrose akkumulering te bepaal. SNI en suikers is geëkstraheer uit 'n kommersiële varieteit, N19. Weefsels was volgens ontwikkelingstadiums (internodes 3, 6 en 9) en anatomiese verskille (verryking vir groeiende, vaat- en bergings-weefsels) verdeel. Die laagste sukrose inhoud is in die middel van die onderste helfte van elke internode gevind. Die verhouding van heksoses tot sukrose was die hoogste in die jong internodes. Die inhoud heksoses was hoër in die onderste deel van die internode as die boonste deel. 'n Betekenisvolle korrelasie tussen sukrose inhoud en SNI is gevind. Flukse betrokke by sukrose sintese en hidrolise is ondersoek. Glukose en fruktose is as koolstofbron aan stingelweefsel van twee variëteite (US6656-15 and N19) toegedien. Sukrose-inhoud het tienvoudig tussen volwasse weefsels van die twee variëteite verskil. Hidrolise via invertase was hoër in ouer weefsels van US6656-15 as N19, en het In noemenswaardige bydrae tot sukroseomset gemaak. Die verdeling van sukrose tussen die vakuool en die sitosol kan moontlik 'n groot rol speel in die vermoë van die sel om sukrose te akkumuleer. Die volgorde van 'n volledige SNI eDNA is bepaal. The uitgedrukte geen het, op beide In nukleïen- en aminosuur vlak, betekenisvolle ooreenkoms getoon met ander bekende plant NI volgordes. Die SNI volgorde bevat nie die kenmerkende invertase katalitiese setel nie, wat daarop kan dui dat dit onafhanklik van ander klasse invertases ontwikkel het. Min of meer 1.8 kb van die SNI eDNA is in 'n vektor geskik vir bioliestiese transformering van suikerrietweefsel, geïnkorporeer. Southern klad analise het gewys dat die ensiem 'n lae kopiegetal op geen vlak het. SNI mRNA uitdrukking is waargeneem in elke weefseltipe van die suikerriet plant: wortels, internodes, blaarrol en blare. In stingelweefsels met lae sukrose- en hoë heksose-inhoud, was die vlakke van beide SNI-mRNA en -proteïen hoog. Dit dui daarop dat SNI moontlik betrokke is by groei-metabolisme.
Demnitz-King, Antje Charlotte. "Sucrose metabolism in relation to import and compartmentation of carbohydrates in developing tomato fruit (Lycopersicon Spp.)." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295594.
Full textЛебедєв, Сергій Юрійович, Сергей Юрьевич Лебедев, Serhii Yuriiovych Lebediev, and А. А. Шапаренко. "Обработка экспериментальных данных кинетики гидролиза сахарозы." Thesis, Сумский государственный университет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31719.
Full textЛебедєв, Сергій Юрійович, Сергей Юрьевич Лебедев, Serhii Yuriiovych Lebediev, and А. А. Шапаренко. "Методика изучения кинетики гидролиза сахарозы." Thesis, Сумский государственный университет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31708.
Full textMrůzková, Karolína. "Využití polarimetrie a refraktometrie ke stanovení koncentrace invertního cukru v invertních sirupech." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449740.
Full textBook chapters on the topic "Kineticі of sucrose hydrolysis"
Romanov, Vasilly I., and Esperanza Martínez-Romero. "Sucrose transport and hydrolysis in Rhizobium tropici." In Symbiotic Nitrogen Fixation, 91–96. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1088-4_9.
Full textCompton, Robert N., and Michael A. Duncan. "Inversion of Sucrose by Acid-Catalyzed Hydrolysis." In Laser Experiments for Chemistry and Physics, 388–92. Oxford University Press, 2015. http://dx.doi.org/10.1093/acprof:oso/9780198742975.003.0031.
Full textMorrow, Gary W. "Biosynthesis of Carbohydrates and Amino Acids." In Bioorganic Synthesis. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780199860531.003.0006.
Full text"nose family of sugars [178]. Total free sugar content of rye from tubers and roots, particularly potato, sweet potato, and was reported as 3.2%, with sucrose (1.9%), raffinose tapioca (cassava). Isolated starch can be modified physical-(0.4%), fructose (0.1%), and glucose (0.08%) [120]. ly and/or chemically to alter its functional properties. Starches and modified starches have an enormous number Ill. STARCH of food uses, including adhesive, binding, clouding, dust-ing, film forming, and thickening applications [20]. Starch is found in a number of plant sources, and the plant relies on starch for its energy requirements for growth and reproduction. For humans, starch is extremely important as A. Starch Content of Cereals a macronutrient, because it is a complex carbohydrate and The most important sources of starch are cereal grains an important energy source in our diet. (40-90% of their dry weight), pulses (30-70%), and tubers The commercial and technological uses of starch are (65-85%). Of the common starches, regular corn, waxy numerous; this arises from its unique character, because it corn, and high-amylose corn are by far the most important can be used directly as intact granules, in the dispersed sources. The starch content of corn may vary from about form, as a film dried from a dispersion, as an extruded 54% in sweet corn to 64-78% in dent [194]. Corn is large-powder, or after conversion to a mixture of oligosaccha-ly used as stock feed but nevertheless supplies the bulk, by rides or via hydrolysis and isomerization. far, of the world's starch production. Corn starch is manu-When starch is heated in water, it absorbs water and factured by traditional wet-milling process. Only about 5% swells. This is the process of gelatinization, a process that of the annual world maize crop is used for the manufacture cause a tremendous change in rheological properties of the of maize starch. About 70% of the maize starch produced starch suspension. The crystalline structure is destroyed is converted into corn syrups, high-fructose corn syrup, during gelatinization. The ability of starch molecules to and dextrose. Corn starch has a wide variety of industrial crystallize after gelatinization is described by the term of applications, with uses ranging from thickening and retrogradation. Although some retrogradation of amylose gelling agents in puddings and fillings to molding for con-seems to be a prerequisite for the formation of a normal fections [72]. bread crumb, long-term retrogradation usually causes Potato starch is a variable commodity, sensitive to vari-gradual deterioration of bread quality during the products' ety, climate, and agricultural procedure. Potato starch, shelf life [55]. however, is presently second only to corn and comparable Starch occurs as discrete granules in higher plants. Two to wheat in terms of quantity produced and especially pop-major polymers, amylose and amylopectin, are contained in ular in Europe. About 3% of the world crop of potatoes is the granule. Cereal starch granules may also contain small used for the production of potato starch. Potato starch is amounts of proteins, lipids, and minerals [118]. Cereal used in food, paper, textile, and adhesive industries. starches are widely used in foods, where they are important The starch content of wheat has been reported to be in functionally and nutritionally. Commercial starches are ob-the range of 63-72% [147] (Table 2). Wheat starch, found tained from cereal grain seeds, particularly from corn, waxy in the endosperm of the wheat kernel, constitutes approxi-corn, high-amylose corn, wheat, and various rites, and mately 75-80% of the endosperm on a dry basis. The TABLE 2 Carbohydrate Composition of Some Cereal Grains' Sample Starch (%) Amylose (%) Pentosan (%) P-Glucan (%) Total dietary fiber Wheat 63-72 (147) 23.4-27.6 (133) 6.6 (81) 1.4 (151) 14.6 (32) Barley 57.6-59.5 (87) 22-26 (27) 5.9 (82) 3-7 (139) 19.3-22.6 (87) Brown rice 66.4 (104) 16-33 (124) 1.2 (81) 0.11 (102) 3.9 (32) Milled rice 77.6 (104) 7-33 (102) 0.5-1.4 (104) 0.11 (104) 2.4 (32) Sorghum 60-77 (194) 21-28 (127) 1.8-4.9 (127) 1.0 (151) 10.1 (160) Pearl Millet 63 (123) 17 (11) 2-3 (12) 8.5 (32) Corn 64-78 (194) 24 (132) 5.8-6.6 (194) 13.4 (32) Oats 43-61 (143) 16-27 (120) 7.7 (81) 3.9-6.8 (198) 9.6 (32) Rye 69 (168) 24-31 (168) 8.5 (81) 1.9-2.9 (151) 14.6 (32) Triticale 53 (22) 24-26 (40) 7.1 (81) 1.2 (151) 18.1 (32) aSources shown in parentheses." In Handbook of Cereal Science and Technology, Revised and Expanded, 403–4. CRC Press, 2000. http://dx.doi.org/10.1201/9781420027228-40.
Full textConference papers on the topic "Kineticі of sucrose hydrolysis"
Casu, S., A. Fanti, N. Djuric, F. Desogus, and G. Mazzarella. "Microwave resonant cavity as a reactor for the enzymatic hydrolysis of sucrose." In 2015 IEEE 15th Mediterranean Microwave Symposium (MMS). IEEE, 2015. http://dx.doi.org/10.1109/mms.2015.7375499.
Full textSteiner, B., and D. R. Phillips. "CA2+-INDUCED STRUCTURAL TRANSITIONS OF THE PLATELET GP IIb-IIIa COMPLEX." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643956.
Full text