Journal articles on the topic 'Kinetic energy harvesters'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Kinetic energy harvesters.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chiu, Min Chie, Ying Chun Chang, Long Jyi Yeh, Chiu Hung Chung, and Chen Hsin Chu. "An Experimental Study of Low-Frequency Vibration-Based Electromagnetic Energy Harvesters Used while Walking." Advanced Materials Research 918 (April 2014): 106–14. http://dx.doi.org/10.4028/www.scientific.net/amr.918.106.
Full textShahosseini, I., and K. Najafi. "Mechanical Amplifier for Translational Kinetic Energy Harvesters." Journal of Physics: Conference Series 557 (November 27, 2014): 012135. http://dx.doi.org/10.1088/1742-6596/557/1/012135.
Full textGhaffarinejad, A., Y. Lu, R. Hinchet, D. Galayko, J. Y. Hasani, and P. Basset. "Bennet's charge doubler boosting triboelectric kinetic energy harvesters." Journal of Physics: Conference Series 1052 (July 2018): 012027. http://dx.doi.org/10.1088/1742-6596/1052/1/012027.
Full textSchaufuss, Joerg, Dirk Scheibner, and Jan Mehner. "New approach of frequency tuning for kinetic energy harvesters." Sensors and Actuators A: Physical 171, no. 2 (November 2011): 352–60. http://dx.doi.org/10.1016/j.sna.2011.07.022.
Full textBasheer, Faiz, Elmehaisi Mehaisi, Ahmed Elsergany, Ahmed ElSheikh, Mehdi Ghommem, and Fehmi Najar. "Energy harvesters for rotating systems: Modeling and performance analysis." tm - Technisches Messen 88, no. 3 (January 16, 2021): 164–77. http://dx.doi.org/10.1515/teme-2020-0088.
Full textO’Riordan, Eoghan, Ronan Frizzell, Diarmuid O’Connell, and Elena Blokhina. "Characterisation of anti-resonance in two-degree-of-freedom electromagnetic kinetic energy harvester, with modified electromagnetic model." Journal of Intelligent Material Systems and Structures 29, no. 10 (March 28, 2018): 2295–306. http://dx.doi.org/10.1177/1045389x18758934.
Full textLu, Zhuang, Quan Wen, Xianming He, and Zhiyu Wen. "A Flutter-Based Electromagnetic Wind Energy Harvester: Theory and Experiments." Applied Sciences 9, no. 22 (November 11, 2019): 4823. http://dx.doi.org/10.3390/app9224823.
Full textIbrahima, Dauda Sh, Asan G. A. Muthalif, and Tanveer Saleh. "A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation." Advanced Materials Research 1115 (July 2015): 549–54. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.549.
Full textNeri, Igor, Flavio Travasso, Riccardo Mincigrucci, Helios Vocca, Francesco Orfei, and Luca Gammaitoni. "A real vibration database for kinetic energy harvesting application." Journal of Intelligent Material Systems and Structures 23, no. 18 (May 6, 2012): 2095–101. http://dx.doi.org/10.1177/1045389x12444488.
Full textBeach, Christopher, and Alexander J. Casson. "Inertial Kinetic Energy Harvesters for Wearables: The Benefits of Energy Harvesting at the Foot." IEEE Access 8 (2020): 208136–48. http://dx.doi.org/10.1109/access.2020.3037952.
Full textAzam, Huda, Noor Hazrin Hany Mohamad Hanif, and Aliza Aini Md Ralib. "MAGNETICALLY INDUCED PIEZOELECTRIC ENERGY HARVESTER VIA HYBRID KINETIC MOTION." IIUM Engineering Journal 20, no. 1 (June 1, 2019): 245–57. http://dx.doi.org/10.31436/iiumej.v20i1.981.
Full textWang, Nianying, Ruofeng Han, Changnan Chen, Jiebin Gu, and Xinxin Li. "Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester." Micromachines 12, no. 1 (January 12, 2021): 74. http://dx.doi.org/10.3390/mi12010074.
Full textNguyen Duy, Vinh, and Hyung-Man Kim. "A Study of the Movement, Structural Stability, and Electrical Performance for Harvesting Ocean Kinetic Energy Based on IPMC Material." Processes 8, no. 6 (May 27, 2020): 641. http://dx.doi.org/10.3390/pr8060641.
Full textCadei, Andrea, Alessandro Dionisi, Emilio Sardini, and Mauro Serpelloni. "Kinetic and thermal energy harvesters for implantable medical devices and biomedical autonomous sensors." Measurement Science and Technology 25, no. 1 (November 13, 2013): 012003. http://dx.doi.org/10.1088/0957-0233/25/1/012003.
Full textCHANG, Jen-Yuan (James), and Mike GUTIERREZ. "Self-Powered Kinetic Energy Harvesters for Seek-Induced Vibrations in Hard Disk Drives." Journal of Advanced Mechanical Design, Systems, and Manufacturing 4, no. 1 (2010): 96–106. http://dx.doi.org/10.1299/jamdsm.4.96.
Full textYu-Jen, Wang, Chuang Tsung-Yi, and Yu Jui-Hsin. "Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency." Smart Materials and Structures 26, no. 9 (August 14, 2017): 095037. http://dx.doi.org/10.1088/1361-665x/aa7ad6.
Full textHuang, Ledeng, Ruishi Wang, Zhenhua Yang, and Longhan Xie. "Energy Harvesting Backpacks for Human Load Carriage: Modelling and Performance Evaluation." Electronics 9, no. 7 (June 28, 2020): 1061. http://dx.doi.org/10.3390/electronics9071061.
Full textRheinländer, Carl C., and Norbert Wehn. "Harvester-aware transient computing: Utilizing the mechanical inertia of kinetic energy harvesters for a proactive frequency-based power loss detection." Integration 75 (November 2020): 122–30. http://dx.doi.org/10.1016/j.vlsi.2020.06.010.
Full textO’Riordan, Eoghan, Dimitri Galayko, Philippe Basset, and Elena Blokhina. "Complete electromechanical analysis of electrostatic kinetic energy harvesters biased with a continuous conditioning circuit." Sensors and Actuators A: Physical 247 (August 2016): 379–88. http://dx.doi.org/10.1016/j.sna.2016.06.018.
Full textSokolov, Andrii, Dhiman Mallick, Saibal Roy, Michael Peter Kennedy, and Elena Blokhina. "Modelling and Verification of Nonlinear Electromechanical Coupling in Micro-Scale Kinetic Electromagnetic Energy Harvesters." IEEE Transactions on Circuits and Systems I: Regular Papers 67, no. 2 (February 2020): 565–77. http://dx.doi.org/10.1109/tcsi.2019.2938421.
Full textZhu, Hongjun, Tao Tang, Huohai Yang, Junlei Wang, Jinze Song, and Geng Peng. "The State-of-the-Art Brief Review on Piezoelectric Energy Harvesting from Flow-Induced Vibration." Shock and Vibration 2021 (April 1, 2021): 1–19. http://dx.doi.org/10.1155/2021/8861821.
Full textMösch, Mario, Gerhard Fischerauer, and Daniel Hoffmann. "A Self-Adaptive and Self-Sufficient Energy Harvesting System." Sensors 20, no. 9 (April 29, 2020): 2519. http://dx.doi.org/10.3390/s20092519.
Full textJasim, Abbas F., Hao Wang, Greg Yesner, Ahmad Safari, and Pat Szary. "Performance Analysis of Piezoelectric Energy Harvesting in Pavement: Laboratory Testing and Field Simulation." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 3 (February 27, 2019): 115–24. http://dx.doi.org/10.1177/0361198119830308.
Full textXu, Ye, Sebastian Bader, Michele Magno, Philipp Mayer, and Bengt Oelmann. "System Implementation Trade-Offs for Low-Speed Rotational Variable Reluctance Energy Harvesters." Sensors 21, no. 18 (September 21, 2021): 6317. http://dx.doi.org/10.3390/s21186317.
Full textBeeby, Stephen P., Leran Wang, Dibin Zhu, Alex S. Weddell, Geoff V. Merrett, Bernard Stark, Gyorgy Szarka, and Bashir M. Al-Hashimi. "A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data." Smart Materials and Structures 22, no. 7 (June 7, 2013): 075022. http://dx.doi.org/10.1088/0964-1726/22/7/075022.
Full textRubes, Ondrej, Zdenek Machu, Oldrich Sevecek, and Zdenek Hadas. "Crack Protective Layered Architecture of Lead-Free Piezoelectric Energy Harvester in Bistable Configuration." Sensors 20, no. 20 (October 14, 2020): 5808. http://dx.doi.org/10.3390/s20205808.
Full textGallardo-Vega, Carlos, Octavio López-Lagunes, Omar I. Nava-Galindo, Arxel De León, Jorge Romero-García, Luz Antonio Aguilera-Cortés, Jaime Martínez-Castillo, and Agustín L. Herrera-May. "Triboelectric Energy Harvester Based on Stainless Steel/MoS2 and PET/ITO/PDMS for Potential Smart Healthcare Devices." Nanomaterials 11, no. 6 (June 10, 2021): 1533. http://dx.doi.org/10.3390/nano11061533.
Full textZheng, Guang Ping, Z. Han, and Y. Z. Liu. "The Microstructural, Mechanical and Electro-Mechanical Properties of Graphene Aerogel-PVDF Nanoporous Composites." Journal of Nano Research 29 (December 2014): 1–6. http://dx.doi.org/10.4028/www.scientific.net/jnanor.29.1.
Full textHam, Seong Su, Gyoung-Ja Lee, Dong Yeol Hyeon, Yeon-gyu Kim, Yeong-won Lim, Min-Ku Lee, Jin-Ju Park, et al. "Kinetic motion sensors based on flexible and lead-free hybrid piezoelectric composite energy harvesters with nanowires-embedded electrodes for detecting articular movements." Composites Part B: Engineering 212 (May 2021): 108705. http://dx.doi.org/10.1016/j.compositesb.2021.108705.
Full textZabihi, Niloufar, and Mohamed Saafi. "Recent Developments in the Energy Harvesting Systems from Road Infrastructures." Sustainability 12, no. 17 (August 20, 2020): 6738. http://dx.doi.org/10.3390/su12176738.
Full textLi, Jie Hong, Ming Jing Cai, and Long Han Xie. "Develop a Magnetic Pendulum to Scavenge Human Kinetic Energy from Arm Motion." Applied Mechanics and Materials 590 (June 2014): 48–52. http://dx.doi.org/10.4028/www.scientific.net/amm.590.48.
Full textAouali, Kaouthar, Najib Kacem, Noureddine Bouhaddi, and Mohamed Haddar. "On the Optimization of a Multimodal Electromagnetic Vibration Energy Harvester Using Mode Localization and Nonlinear Dynamics." Actuators 10, no. 2 (January 30, 2021): 25. http://dx.doi.org/10.3390/act10020025.
Full textManjarres, Jose, and Mauricio Pardo. "An Energy Logger for Kinetic-Powered Wrist-Wearable Systems." Electronics 9, no. 3 (March 15, 2020): 487. http://dx.doi.org/10.3390/electronics9030487.
Full textCHANG, Jen-Yuan (James). "DVM-04 SELF-POWERED SEEK-INDUCED KINETIC ENERGY HARVESTER IN COMPUTER HARD DISK DRIVES(Drive Mechanisms I,Technical Program of Oral Presentations)." Proceedings of JSME-IIP/ASME-ISPS Joint Conference on Micromechatronics for Information and Precision Equipment : IIP/ISPS joint MIPE 2009 (2009): 169–70. http://dx.doi.org/10.1299/jsmemipe.2009.169.
Full textNarolia, Tejkaran, Vijay K. Gupta, and IA Parinov. "Design and experimental study of rotary-type energy harvester." Journal of Intelligent Material Systems and Structures 31, no. 13 (June 12, 2020): 1594–603. http://dx.doi.org/10.1177/1045389x20930085.
Full textNa, Yeong-min, Hyun-seok Lee, and Jong-kyu Park. "A study on piezoelectric energy harvester using kinetic energy of ocean." Journal of Mechanical Science and Technology 32, no. 10 (October 2018): 4747–55. http://dx.doi.org/10.1007/s12206-018-0922-1.
Full textBeyaz, Mustafa, Hacene Baelhadj, Sahar Habibiabad, Shyam Adhikari, Hossein Davoodi, and Vlad Badilita. "A Non-Resonant Kinetic Energy Harvester for Bioimplantable Applications." Micromachines 9, no. 5 (May 5, 2018): 217. http://dx.doi.org/10.3390/mi9050217.
Full textLee, Chibum, and Hee Jae Park. "Design of Optimal Kinetic Energy Harvester Using Double Pendulum." Journal of the Korean Society of Manufacturing Technology Engineers 24, no. 6 (December 15, 2015): 619–24. http://dx.doi.org/10.7735/ksmte.2015.24.6.619.
Full textZeng, Peng, and Alireza Khaligh. "A Permanent-Magnet Linear Motion Driven Kinetic Energy Harvester." IEEE Transactions on Industrial Electronics 60, no. 12 (December 2013): 5737–46. http://dx.doi.org/10.1109/tie.2012.2229674.
Full textZeng, Shan, Chunwei Zhang, Kaifa Wang, Baolin Wang, and Li Sun. "Analysis of delamination of unimorph cantilever piezoelectric energy harvesters." Journal of Intelligent Material Systems and Structures 29, no. 9 (February 14, 2018): 1875–83. http://dx.doi.org/10.1177/1045389x17754273.
Full textSong, Jiayang, and Kean C. Aw. "An energy harvester from human vibrational kinetic energy for wearable biomedical devices." International Journal of Biomechatronics and Biomedical Robotics 3, no. 1 (2014): 54. http://dx.doi.org/10.1504/ijbbr.2014.059281.
Full textKwon, Dae-Sung, Hee-Jin Ko, Min-Ook Kim, Yongkeun Oh, Jaesam Sim, Kyounghoon Lee, Kyung-Ho Cho, and Jongbaeg Kim. "Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation." Applied Physics Letters 104, no. 11 (March 17, 2014): 113904. http://dx.doi.org/10.1063/1.4869130.
Full textAyala-Garcia, I. N., P. D. Mitcheson, E. M. Yeatman, D. Zhu, J. Tudor, and S. P. Beeby. "Magnetic tuning of a kinetic energy harvester using variable reluctance." Sensors and Actuators A: Physical 189 (January 2013): 266–75. http://dx.doi.org/10.1016/j.sna.2012.11.004.
Full textKumar, Mithlesh, G. M. A. Murali Krishna, Banibrata Mukherjee, and Siddhartha Sen. "Design of SOI MEMS-based Bennet’s doubler kinetic energy harvester." Journal of Micro/Nanolithography, MEMS, and MOEMS 19, no. 01 (February 20, 2020): 1. http://dx.doi.org/10.1117/1.jmm.19.1.015001.
Full textAyala-Garcia, I. N., D. Zhu, M. J. Tudor, and S. P. Beeby. "A tunable kinetic energy harvester with dynamic over range protection." Smart Materials and Structures 19, no. 11 (September 21, 2010): 115005. http://dx.doi.org/10.1088/0964-1726/19/11/115005.
Full textMachů, Zdeněk, Oldřich Ševeček, Zdeněk Hadaš, and Michal Kotoul. "Modeling of electromechanical response and fracture resistance of multilayer piezoelectric energy harvester with residual stresses." Journal of Intelligent Material Systems and Structures 31, no. 19 (July 30, 2020): 2261–87. http://dx.doi.org/10.1177/1045389x20942832.
Full textKim, In-Ho, Seon-Jun Jang, Shi-Baek Park, Hyung-Jo Jung, and Young-Cheol Kim. "Tunable yo-yo energy harvester with oblique springs." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 16 (March 25, 2020): 3185–94. http://dx.doi.org/10.1177/0954406220913593.
Full textLitak, Grzegorz, Jerzy Margielewicz, Damian Gąska, Piotr Wolszczak, and Shengxi Zhou. "Multiple Solutions of the Tristable Energy Harvester." Energies 14, no. 5 (February 26, 2021): 1284. http://dx.doi.org/10.3390/en14051284.
Full textVan Herbruggen, Ben, Jaron Fontaine, Anniek Eerdekens, Margot Deruyck, Wout Joseph, and Eli De Poorter. "Feasibility of Wireless Horse Monitoring Using a Kinetic Energy Harvester Model." Electronics 9, no. 10 (October 20, 2020): 1730. http://dx.doi.org/10.3390/electronics9101730.
Full textWu, Shuai, P. C. K. Luk, Chunfang Li, Xiangyu Zhao, and Zongxia Jiao. "Investigation of an Electromagnetic Wearable Resonance Kinetic Energy Harvester With Ferrofluid." IEEE Transactions on Magnetics 53, no. 9 (September 2017): 1–6. http://dx.doi.org/10.1109/tmag.2017.2714621.
Full text