Academic literature on the topic 'Kinetic theory of gases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kinetic theory of gases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kinetic theory of gases"

1

Cornely-Moss, Kathleen. "Kinetic Theory of Gases." Journal of Chemical Education 72, no. 8 (August 1995): 715. http://dx.doi.org/10.1021/ed072p715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trizac, Emmanuel. "Kinetic Theory of Granular Gases." Journal of Physics A: Mathematical and General 38, no. 47 (November 9, 2005): 10257–58. http://dx.doi.org/10.1088/0305-4470/38/47/b01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Khachatryan, A. Kh, T. H. Sardaryan, and Kh A. Khachatryan. "On One Nonlinear Boundary-Value Problem in Kinetic Theory of Gases." Zurnal matematiceskoj fiziki, analiza, geometrii 10, no. 3 (September 25, 2014): 320–27. http://dx.doi.org/10.15407/mag10.03.320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaveau, B., and L. S. Schulman. "Reconciling Kinetic and Quantum Theory." Foundations of Physics 50, no. 2 (January 2, 2020): 55–60. http://dx.doi.org/10.1007/s10701-019-00317-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MATUDA, Namio. "Basic Concepts to Kinetic Theory of Gases." Journal of the Vacuum Society of Japan 56, no. 6 (2013): 199–203. http://dx.doi.org/10.3131/jvsj2.56.199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

de Regt, Henk W. "Philosophy and the Kinetic Theory of Gases." British Journal for the Philosophy of Science 47, no. 1 (March 1, 1996): 31–62. http://dx.doi.org/10.1093/bjps/47.1.31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Noskowicz, S. H., O. Bar-Lev, D. Serero, and I. Goldhirsch. "Computer-aided kinetic theory and granular gases." Europhysics Letters (EPL) 79, no. 6 (August 7, 2007): 60001. http://dx.doi.org/10.1209/0295-5075/79/60001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cercignani, Carlo. "Book Review: Kinetic Theory of Granular Gases." Journal of Statistical Physics 118, no. 5-6 (March 2005): 1263–64. http://dx.doi.org/10.1007/s10955-004-2116-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kremer, G. M. "On the kinetic theory of relativistic gases." Continuum Mechanics and Thermodynamics 9, no. 1 (February 1997): 13–21. http://dx.doi.org/10.1007/s001610050052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pavić-Čolić, Milana, and Srboljub Simić. "Six-Field Theory for a Polyatomic Gas Mixture: Extended Thermodynamics and Kinetic Models." Fluids 7, no. 12 (December 9, 2022): 381. http://dx.doi.org/10.3390/fluids7120381.

Full text
Abstract:
Polyatomic gases may be characterized by internal molecular degrees of freedom. As a consequence, at a macroscopic level, dynamic pressure appears, which may be related to the bulk viscosity of the gas. Inspired by the models of a single polyatomic gas with six fields, developed within rational extended thermodynamics (RET) and the kinetic theory of gases, this paper presents a six-field theory for the mixture of polyatomic gases. First, the macroscopic mixture model is developed within the framework of RET. Second, the mixture of gases with six fields is analyzed in the context of the kinetic theory of gases, and corresponding moment equations are derived. Finally, complete closure of the RET model, i.e., computation of the phenomenological coefficients, is achieved by means of a combined macroscopic/kinetic closure procedure.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Kinetic theory of gases"

1

Geist, Wolfgang. "Kinetic theory of evaporative cooling of trapped atomic gases." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valougeorgis, Dimitris V. "The Fn method in kinetic theory." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/49949.

Full text
Abstract:
A complete formulation of the recently developed. FN method in kinetic theory is presented and the accuracy of this advanced semi-analytical-numerical technique is demonstrated by testing the method to several classical problems in rarefied gas dynamics. The method is based on the existing analysis for the vector transport equation arising from the decomposition of the linearized BGK equation. Using full-range orthogonality, a system of singular integral equations for the distribution functions at the boundaries is established. The unknown distribution functions are then approximated by a finite expansion in terms of a set of basis functions and the coefficients of the expansion are found by requiring the set of the reduced algebraic equations to be satisfied at certain collocation points. By studying the half-space heat transfer and weak evaporation problems and the problem of heat transfer between two parallel plates it is demonstrated that the FN method is a viable solution technique yielding results of benchmark accuracy. Two different sets of basis functions are provided for half-space and finite media problems, respectively. In all cases, highly accurate numerical results are computed and compared to existing exact solutions. The obtained numerical results help in judging the accuracy to expect of the method and indicate that the FN method may be applied with confidence to problems for which, more exact methods of analysis do not appear possible. Then, the cylindrical Poiseuille flow and thermal creep problems, which are not amenable to exact treatment, are solved. The FN method is formulated and tested successfully for the first time in cylindrical geometry in kinetic theory. The complete solution of the two aforementioned problems is presented with the numerical results quoted as converged being of reference-quality good for benchmark accuracy.
Ph. D.
incomplete_metadata
APA, Harvard, Vancouver, ISO, and other styles
3

SAMUDRA, SAMEER D. "KINETIC THEORY APPROACH TO PLASMA HEAT TRANSFER." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990028080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Ziji. "Theoretical and computational study of coupling of soot, gas kinetics and radiation in diffusion flames using reduced mechanisms /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Esposito, Massimiliano. "Kinetic theory for quantum nanosystems." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211088.

Full text
Abstract:
In this thesis, we investigate the emergence of kinetic processes in finite quantum systems. We first generalize the Redfield theory to describe the dynamics of a small quantum system weakly interacting with an environment of finite heat capacity. We then study in detail the spin-GORM model, a model made of a two-level system interacting with a random matrix environment. By doing this, we verify our new theory and find a critical size of the environment over which kinetic processes occur. We finally study the emergence of a diffusive transport process, on a finite tight-binding subsystem interacting with a fast environment, when the size of subsystem exceeds a critical value.
Doctorat en sciences, Spécialisation chimie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
6

Jin, Changqiu. "Gas-kinetic moving mesh methods for viscous flow simulations /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MATH%202006%20JIN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Hongwei. "Gas-kinetic methods for viscous fluid flows /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MATH%202007%20LIU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Chun-Lin. "Compressible convection simulation by the gas-kinetic BGK scheme /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MATH%202005%20TIAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pavić, Milana. "Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics." Thesis, Cachan, Ecole normale supérieure, 2014. http://www.theses.fr/2014DENS0033/document.

Full text
Abstract:
En ce qui concerne les gaz polyatomiques, nous proposons deux hiérarchies distinctes formées d'équations de moments, qui permettent d'obtenir des lois de conservation de la densité de masse, de la quantité de mouvement et de l'énergie totale du gaz. Ces hiérarchies sont généralement coupées à un certain ordre. Une méthode qui fournit une solution appropriée au problème de fermeture est la méthode de la maximisation d'entropie. Nous formulons un problème variationnel et nous explorons en détail le cas physique de 14 moments. On étudie un mélange de gaz polyatomiques dans lequel la fonction de distribution de chaque espèce converge vers une Maxwellienne, chacune avec sa propre vitesse moyenne et température. Les lois pour la densité de masse, de quantité de mouvement et d'énergie peuvent être obtenues. En particulier, les coefficients phénoménologiques de la thermodynamique étendue peuvent être déterminés à partir des termes sources. On présente pour les mélanges de gaz monoatomiques l'asymptotique diffusive des équations de Boltzmann. Le développement de Hilbert de chaque fonction de distribution donne deux équations. La première équation permet d'affirmer que le mélange est proche de l'équilibre. La deuxième équation est une équation fonctionnelle linéaire en la variable de vitesse. Nous prouvons l'existence d'une solution de cette équation. D'une part, lorsque les masses moléculaires sont égales, les techniques introduites par Grad peuvent être utilisés. D'autre part, nous proposons une nouvelle approche qui est valable lorsque les masses moléculaires sont différentes
Considering polyatomic gases, we first propose two independent hierarchies of the moment equations, which allow to obtain conservation laws for mass density, momentum and total energy of a gas. Such hierarchies are usually truncated at some order. A method which provides an appropriate solution to the closure problem is the maximization of entropy method. We formulate a variational problem and explore in detail the physical case of 14 moments. We study mixtures of polyatomic gases in which the distribution function of each species converges towards a Maxwellian distribution function, each with its own bulk velocity and temperature. Balance laws for mass density, momentum and energy can be obtained. In particular, the phenomenological coefficients of extended thermodynamics can be determined from the source terms. Regarding mixtures of monatomic gases, we discuss the diffusion asymptotics of the Boltzmann equations. The Hilbert expansion yields two equations. The first equation allows to state that the mixture is close to equilibrium. The second equation is a linear functional equation in the velocity variable. We prove the existence of a solution to this equation. On the one hand, when molecular masses are equal, the techniques introduced by Grad can be used. On the other hand, we propose a new approach, which only holds when molecular masses are different
APA, Harvard, Vancouver, ISO, and other styles
10

Milana, Pavić. "Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2014. https://www.cris.uns.ac.rs/record.jsf?recordId=87879&source=NDLTD&language=en.

Full text
Abstract:
We construct two independent hierarchies of moment equations and we apply the maximum entropy principle for polyatomic gases. We formulate multivelocity and multitemperature model of Eulerian polyatomic gases starting from kinetic theory, that is compared in the neighborhood of global equilibrium state to the models based on extended thermodynamics. We analyze diffusion asymptotics of the Boltzmann equations for mixtures of monatomic gases.
Конструишу се две независне хијерархијеједначина момената и примењује се принципмаксимума ентропије за вишеатомске гасове.Формира се вишебрзински и вишетемпературнимодел Ојлерових вишеатомских гасова полазећиод кинетичке теорије и добијени модел сепореди у околини стања глобалне равнотеже самоделом проширене термодинамике. Анализирасе дифузиона асимптотика Болцмановихједначина за мешавине једноатомских гасова.
Konstruišu se dve nezavisne hijerarhijejednačina momenata i primenjuje se principmaksimuma entropije za višeatomske gasove.Formira se višebrzinski i višetemperaturnimodel Ojlerovih višeatomskih gasova polazećiod kinetičke teorije i dobijeni model seporedi u okolini stanja globalne ravnoteže samodelom proširene termodinamike. Analizirase difuziona asimptotika Bolcmanovihjednačina za mešavine jednoatomskih gasova.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Kinetic theory of gases"

1

Kauzmann, Walter. Kinetic theory of gases. Mineola, N.Y: Dover Publications, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swanson, D. G. Plasma kinetic theory. Boca Raton, Fla: Taylor & Francis, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1963-, Pöschel Thorsten, ed. Kinetic theory of granular gases. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chapman, Sydney. The mathematical theory of non-uniform gases: An account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases. 3rd ed. Cambridge: Cambridge University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

P. P. J. M. Schram. Kinetic Theory of Gases and Plasmas. Dordrecht: Springer Netherlands, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schram, P. P. J. M. Kinetic Theory of Gases and Plasmas. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3612-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gombosi, Tamás I. Gaskinetic theory. Cambridge [England]: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Pilling M., and Smith Ian W. M, eds. Modern gas kinetics: Theory, experiment, and application. Oxford [Oxfordshire]: Blackwell Scientific Publications, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carlo, Cercignani, ed. Kinetic theory and gas dynamics. Wien: Springer, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eu, B. C. Kinetic theory and irreversible thermodynamics. New York: Wiley, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Kinetic theory of gases"

1

van Noije, Twan P. C., and Matthieu H. Ernst. "Kinetic Theory of Granular Gases." In Granular Gases, 3–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44506-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boulos, Maher I., Pierre Fauchais, and Emil Pfender. "Kinetic Theory of Gases." In Handbook of Thermal Plasmas, 1–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12183-3_3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Radi, Hafez A., and John O. Rasmussen. "Kinetic Theory of Gases." In Undergraduate Lecture Notes in Physics, 427–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23026-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skačej, Gregor, and Primož Ziherl. "Kinetic Theory of Gases." In Solved Problems in Thermodynamics and Statistical Physics, 259–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27661-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Sandeep. "Kinetic Theory of Gases." In Thermal and Statistical Physics, 213–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07685-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Emch, Gérard G., and Chuang Liu. "Kinetic Theory of Gases." In The Logic of Thermostatistical Physics, 81–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04886-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fai, Lukong Cornelius. "Kinetic Theory of Gases." In Feynman Path Integrals in Quantum Mechanics and Statistical Physics, 365–89. Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003145554-21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boulos, Maher I., Pierre L. Fauchais, and Emil Pfender. "Kinetic Theory of Gases." In Handbook of Thermal Plasmas, 103–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-84936-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bagchi, Biman. "Kinetic Theory of Gases." In Nonequilibrium Statistical Mechanics, 76–96. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003157601-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ramírez, Rosa, and Patricio Cordero. "Kinetic Theory for 1D Granular Gases." In Granular Gases, 195–202. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44506-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Kinetic theory of gases"

1

Chen, James M. "Advanced Kinetic Theory for Polyatomic Gases at Equilibrium." In 46th AIAA Fluid Dynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Golse, François. "From the Kinetic Theory of Gases to Continuum Mechanics." In 27TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS. AIP, 2011. http://dx.doi.org/10.1063/1.3562621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FREZZOTTI, A. "KINETIC THEORY APPLICATIONS IN EVAPORATION/CONDENSATION FLOWS OF POLYATOMIC GASES." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prayoga, Arief, Fathiah Alatas, Ai Nurlaela, and Dwi Nanto. "Android virtual laboratory application for kinetic theory of gases learning." In IWOSP 2021, INTERNATIONAL WORKSHOP ON STATISTICAL PHYSICS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0123855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pantazis, Sarantis, and Dimitris Valougeorgis. "Simulation of Gaseous Microscale Transport Phenomena via Kinetic Theory." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30178.

Full text
Abstract:
Kinetic theory of gases, as described by the Boltzmann or model kinetic equations, provides a solid theoretical approach for solving microscale transport phenomena in gases. Due to significant advancement in computational kinetic theory and due to the availability of high speed parallel computers, kinetic equations may be solved numerically with modest computational effort. In this framework, recently developed upgraded discrete velocity algorithms for solving linear and nonlinear kinetic equations are presented. In addition, their applicability in simulating efficiently and accurately multidimensional micro flow and heat transfer problems is demonstrated. Analysis and results are valid in the whole range of the Knudsen number.
APA, Harvard, Vancouver, ISO, and other styles
6

Magin, Thierry, Benjamin Graille, and Marc Massot. "Kinetic theory derivation of transport equations for gases with internal energy." In 42nd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-4034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Conforto, F., R. Monaco, F. Schürrer, and I. Ziegler. "DETONATION WAVE STRUCTURE ARISING FROM THE KINETIC THEORY OF REACTING GASES." In Proceedings of the 11th Conference on WASCOM 2001. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777331_0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qazi Zade, Azad, Metin Renksizbulut, and Jacob Friedman. "Boundary Conditions for Multi-Component Slip-Flows Based on the Kinetic Theory of Gases." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62178.

Full text
Abstract:
General temperature-jump, velocity-slip, and concentration-jump conditions on solid surfaces in rarefied multi-component gas flows are developed using the kinetic theory of gases. The presented model provides general boundary conditions which can be simplified according to the problem under consideration. In some limiting cases, the results of the current work are compared to the previously available and widely used boundary conditions reported in the literature. The details of the mathematical procedure are also provided to give a better insight about the physical importance of each term in the slip/jump boundary conditions. Also the disagreements between previously reported results are investigated to arrive at the most proper expressions for the slip/jump boundary conditions. The temperature-jump boundary condition is also modified to handle polyatomic gas flows unlike previously reported studies which were mostly concerned with monatomic gases.
APA, Harvard, Vancouver, ISO, and other styles
9

Bendib, A., El-Hachemi Amara, Saïd Boudjemai, and Djamila Doumaz. "Kinetic Theory in Hot Plasmas and Neutral Gases Applications to the Computation of the transport coefficients." In LASER AND PLASMA APPLICATIONS IN MATERIALS SCIENCE: First International Conference on Laser Plasma Applications in Materials Science—LAPAMS’08. AIP, 2008. http://dx.doi.org/10.1063/1.2999972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shershnev, Anton, Alexey Kudryavtsev, and Alexander Kashkovsky. "Numerical simulation of the Rayleigh-Taylor instability in rarefied mixture of monatomic gases using continuum and kinetic approaches." In ACTUAL PROBLEMS OF CONTINUUM MECHANICS: EXPERIMENT, THEORY, AND APPLICATIONS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0132266.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Kinetic theory of gases"

1

Gidaspow, D. Applications of kinetic theory. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5652777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

H. Qin, W. M. Tang, and W. W. Lee. Gyrocenter-gauge kinetic theory. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/759298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, J. A. Theory of condensable gases. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5641644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gidaspow, D. Computation of hydrodynamics using kinetic theory. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5686161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roussel-Dupre, R. A., A. V. Gurevich, T. Tunnell, and G. M. Milikh. Kinetic theory of runaway air-breakdown. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10186712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berk, H. L., M. S. Pekker, and B. N. Breizman. Nonlinear theory of kinetic instabilities near threshold. Office of Scientific and Technical Information (OSTI), May 1997. http://dx.doi.org/10.2172/510404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mett, R. R., and S. M. Mahajan. Kinetic theory of toroidicity-induced Alfven eigenmode. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/5729935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mett, R. R., and S. M. Mahajan. Kinetic theory of toroidicity-induced Alfven eigenmode. Office of Scientific and Technical Information (OSTI), March 1992. http://dx.doi.org/10.2172/10133482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hazeltine, R. D., and P. J. Catto. Kinetic and transport theory near the tokamak edge. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/171362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monchick, L. Modern kinetic theory of Q-branch Raman scattering. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/582281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography