To see the other types of publications on this topic, follow the link: Kinetic vs thermodynamic.

Journal articles on the topic 'Kinetic vs thermodynamic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Kinetic vs thermodynamic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hodnett, Benjamin K., and Vivek Verma. "Thermodynamic vs. Kinetic Basis for Polymorph Selection." Processes 7, no. 5 (May 9, 2019): 272. http://dx.doi.org/10.3390/pr7050272.

Full text
Abstract:
Ratios of equilibrium solubilities rarely exceed two-fold for polymorph pairs. A model has been developed based on two intrinsic properties of polymorph pairs, namely the ratio of equilibrium solubilities of the individual pairs (C*me/C*st) and the ratio of interfacial energies (γst/γme) and one applied experimental condition, namely the supersaturation identifies which one of a pair of polymorphs nucleates first. A domain diagram has been developed, which identifies the point where the critical free energy of nucleation for the polymorph pair are identical. Essentially, for a system supersaturated with respect to both polymorphs, the model identifies that low supersaturation with respect to the stable polymorph (Sst) leads to an extremely small supersaturation with respect to the metastable polymorph (Sme), radically driving up the critical free energy with respect to the metastable polymorph. Generally, high supersaturations sometimes much higher than the upper limit of the metastable zone, are required to kinetically favour the metastable polymorph.
APA, Harvard, Vancouver, ISO, and other styles
2

Wipf, P., H. Takahashi, and Nian Zhuang. "Kinetic vs. thermodynamic control in hydrozirconation reactions." Pure and Applied Chemistry 70, no. 5 (January 1, 1998): 1077–82. http://dx.doi.org/10.1351/pac199870051077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bächinger, Hans Peter, and Jürgen Engel. "Thermodynamic vs. kinetic stability of collagen triple helices." Matrix Biology 20, no. 4 (July 2001): 267–69. http://dx.doi.org/10.1016/s0945-053x(01)00138-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Field, Leslie D., Sever Sternhell, and Howard V. Wilton. "Electrophilic Substitution in Naphthalene: Kinetic vs Thermodynamic Control." Journal of Chemical Education 76, no. 9 (September 1999): 1246. http://dx.doi.org/10.1021/ed076p1246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

WIPF, P., H. TAKAHASHI, and N. ZHUANG. "ChemInform Abstract: Kinetic vs. Thermodynamic Control in Hydrozirconation Reactions." ChemInform 29, no. 47 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199847337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rowan, Stuart J., and Jeremy K. M. Sanders. "Macrocycles Derived from Cinchona Alkaloids: A Thermodynamic vs Kinetic Study." Journal of Organic Chemistry 63, no. 5 (March 1998): 1536–46. http://dx.doi.org/10.1021/jo971813h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tomin, Vladimir I., Alexander P. Demchenko, and Pi-Tai Chou. "Thermodynamic vs. kinetic control of excited-state proton transfer reactions." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 22 (March 2015): 1–18. http://dx.doi.org/10.1016/j.jphotochemrev.2014.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bartmess, John E., and Jeffrey P. Kiplinger. "Kinetic vs. thermodynamic acidities of enones in the gas phase." Journal of Organic Chemistry 51, no. 12 (June 1986): 2173–76. http://dx.doi.org/10.1021/jo00362a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Lin Zhi, Robert Flammang, Andre Maquestiau, Robert W. Taft, Javier Catalan, Pilar Cabildo, Rosa M. Claramunt, and Jose Elguero. "Thermodynamic basicity vs. kinetic basicity of diazoles (imidazoles and pyrazoles)." Journal of Organic Chemistry 56, no. 1 (January 1991): 179–83. http://dx.doi.org/10.1021/jo00001a036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Deng, Li, Kevin Czerwinski, and James M. Cook. "Stereospecificity in the Pictet-Spengler reaction kinetic vs thermodynamic control." Tetrahedron Letters 32, no. 2 (January 1991): 175–78. http://dx.doi.org/10.1016/0040-4039(91)80847-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sous, Mariana El, Danny Ganame, Shannon Zanatta, and Mark A. Rizzacasa. "Total synthesis of spiroketal containing natural products: kinetic vs. thermodynamic approaches." Arkivoc 2006, no. 7 (January 10, 2006): 105–19. http://dx.doi.org/10.3998/ark.5550190.0007.710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Taber, D. "Kinetic vs. Thermodynamic Control in Intramolecular Diene Cyclozirconation: Synthesis of Elemol." Tetrahedron Letters 36, no. 3 (January 16, 1995): 6639–42. http://dx.doi.org/10.1016/0040-4039(95)01392-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Taber, Douglass F., and Yanong Wang. "Kinetic vs. thermodynamic control in intramolecular diene cyclozirconation: Synthesis of elemol." Tetrahedron Letters 36, no. 37 (September 1995): 6639–42. http://dx.doi.org/10.1016/00404-0399(50)1392-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kumar, Manoj, Thurpu Raghavender Reddy, Aakanksha Gurawa, and Sudhir Kashyap. "Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of “armed” and “disarmed” glycal donors." Organic & Biomolecular Chemistry 18, no. 25 (2020): 4848–62. http://dx.doi.org/10.1039/d0ob01042a.

Full text
Abstract:
The thermodynamic–kinetic switch model enables the selective activation of the enol–ether moiety in “armed” and “disarmed” glycal donors leading to syn-diastereoselective direct addition or an allylic rearrangement.
APA, Harvard, Vancouver, ISO, and other styles
15

Metsue, Arnaud, Abdelali Oudriss, and Xavier Feaugas. "Thermodynamic vs. Kinetic Origin of Superabundant Vacancy Formation in Ni Single Crystals." CORROSION 75, no. 8 (August 2019): 898–902. http://dx.doi.org/10.5006/3101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Roskosz, Mathieu, Michael J. Toplis, and Pascal Richet. "Kinetic vs. thermodynamic control of crystal nucleation and growth in molten silicates." Journal of Non-Crystalline Solids 352, no. 2 (February 2006): 180–84. http://dx.doi.org/10.1016/j.jnoncrysol.2005.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Tanko, James M., and Rosemal H. Mas. "Kinetic vs. thermodynamic factors in .alpha.-hydrogen atom abstractions from alkyl aromatics." Journal of Organic Chemistry 55, no. 17 (August 1990): 5145–50. http://dx.doi.org/10.1021/jo00304a029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

DENG, L., K. CZERWINSKI, and J. M. COOK. "ChemInform Abstract: Stereospecificity in the Pictet-Spengler Reaction. Kinetic vs Thermodynamic Control." ChemInform 22, no. 48 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199148171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tee, Oswald S., Georgia D. Spiropoulos, Robert S. McDonald, Valerie D. Geldart, and David Moore. "Reversible ring-opening of thiamine. Kinetic vs. thermodynamic control of the reclosure." Journal of Organic Chemistry 51, no. 11 (May 1986): 2150–51. http://dx.doi.org/10.1021/jo00361a050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fornero, Esteban L., Dante L. Chiavassa, Adrian L. Bonivardi, and Miguel A. Baltanás. "CO2 capture via catalytic hydrogenation to methanol: Thermodynamic limit vs. ‘kinetic limit’." Catalysis Today 172, no. 1 (August 2011): 158–65. http://dx.doi.org/10.1016/j.cattod.2011.02.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Krug, Claudio K., Qitang Fan, Florian Fillsack, Johannes Glowatzki, Nicole Trebel, Lukas J. Heuplick, Tabea Koehler, and J. Michael Gottfried. "Organometallic ring vs. chain formation beyond kinetic control: steering their equilibrium in two-dimensional confinement." Chemical Communications 54, no. 70 (2018): 9741–44. http://dx.doi.org/10.1039/c8cc05357j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Horváth, András. "Catalysis and regioselectivity in the Michael addition of azoles. Kinetic vs. thermodynamic control." Tetrahedron Letters 37, no. 25 (June 1996): 4423–26. http://dx.doi.org/10.1016/0040-4039(96)00845-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alberti, Giancarla, and Raffaela Biesuz. "Empore™ membrane vs. Chelex 100: Thermodynamic and kinetic studies on metals sorption." Reactive and Functional Polymers 71, no. 5 (May 2011): 588–98. http://dx.doi.org/10.1016/j.reactfunctpolym.2011.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chatterjee, Moneesh, Katherine D. Cramer, and Craig A. Townsend. "Kinetic vs. Thermodynamic Determinants in the Sequence Selectivity of DNA Cleavage by Calicheamicin." Journal of the American Chemical Society 116, no. 19 (September 1994): 8819–20. http://dx.doi.org/10.1021/ja00098a056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

TABER, D. F., and Y. WANG. "ChemInform Abstract: Kinetic vs. Thermodynamic Control in Intramolecular Diene Cyclozirconation: Synthesis of Elemol." ChemInform 26, no. 51 (August 16, 2010): no. http://dx.doi.org/10.1002/chin.199551234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Taffin, Céline, Glenda Kreutler, Damien Bourgeois, Eric Clot, and Christian Périgaud. "Diels–Alder reaction of vinylene carbonate and 2,5-dimethylfuran: kinetic vs. thermodynamic control." New Journal of Chemistry 34, no. 3 (2010): 517. http://dx.doi.org/10.1039/b9nj00536f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fiege, Adrian, Harald Behrens, François Holtz, and Franziska Adams. "Kinetic vs. thermodynamic control of degassing of H2O–S±Cl-bearing andesitic melts." Geochimica et Cosmochimica Acta 125 (January 2014): 241–64. http://dx.doi.org/10.1016/j.gca.2013.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Freihammer, Patricia M., and Michael R. Detty. "Halogenation of 4-Phenyl-3-(phenylsulfonyl)-2-azetidinones withN-Halosuccinimides. Kinetic vs Thermodynamic Control." Journal of Organic Chemistry 65, no. 21 (October 2000): 7203–7. http://dx.doi.org/10.1021/jo000273c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Simon, Csaba, Sándor Hosztafi, and Sándor Makleit. "The First Preparation of 6β-Bromo Codeine and Morphine Derivatives. Kinetic vs. Thermodynamic Control." Journal of Chemical Research, no. 12 (1997): 437. http://dx.doi.org/10.1039/a704502f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tockstein, Antonín. "A bistable kinetic system with oscillations on the thermodynamic and flow-through branches." Collection of Czechoslovak Chemical Communications 52, no. 10 (1987): 2365–74. http://dx.doi.org/10.1135/cccc19872365.

Full text
Abstract:
A model of a flow-through perfectly stirred reactor comprising three consecutive competitive reactions with parallel reactions of some intermediates and exhibiting bistable behaviour and possessing regions with an oscillatory character on the thermodynamic branch is treated. The stationary concentration vs parameter dependence is of the fourth degree and the characteristic equation, of the fifth degree.
APA, Harvard, Vancouver, ISO, and other styles
31

Marchand, Alan P., Bishwajit Ganguly, William H. Watson, and Satish G. Bodige. "Thermodynamic vs. kinetic control in the Diels-Alder cycloaddition of cyclopentadiene to 2,3-dicyano-p-benzoquinone: Kinetic control revisited." Tetrahedron 54, no. 37 (September 1998): 10967–72. http://dx.doi.org/10.1016/s0040-4020(98)00662-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wu, Yue, Yingbo Yu, and Sándor J. Kovács. "Contraction-relaxation coupling mechanism characterization in the thermodynamic phase plane: normal vs. impaired left ventricular ejection fraction." Journal of Applied Physiology 102, no. 4 (April 2007): 1367–73. http://dx.doi.org/10.1152/japplphysiol.00593.2006.

Full text
Abstract:
Using simultaneous pressure-volume measurements obtained during cardiac catheterization, we employ the thermodynamic phase-plane (TPP) method to characterize global contraction-relaxation coupling (CRC) between normal and impaired left ventricular (LV) ejection fraction (LVEF) groups. The cardiac cycle inscribes a closed loop in the TPP defined by the coordinates “potential” power [V(dP/d t), ergs/s] and “kinetic” power [P(dV/d t), ergs/s]. The TPP-derived indexes κ and ρ define the chamber's contractile and CRC attributes, respectively. Data from 33 subjects dichotomized as normal control ( n = 22, >50% LVEF) and impaired LVEF ( n = 11, <50% LVEF) were analyzed. The results were as follows: κ = 3.0 ± 1.1 and ρ = −0.38 ± 0.21 for controls and κ = 5.4 ± 1.6 and ρ = −1.14 ± 0.47 for the impaired LVEF group; κ and ρ are significantly higher for impaired LVEF than for control ( P < 0.001 for both). As κ increased, ρ decreased ( r = −0.69) for all subjects. Hence, ventricles with impaired LVEF are thermodynamically less efficient because they require more potential power per unit of delivered kinetic power than controls. We conclude that TPP-derived indexes of CRC facilitate assessment of chamber efficiency in thermodynamic terms and elucidate the dominant differentiating features in terms of CRC indexes.
APA, Harvard, Vancouver, ISO, and other styles
33

Nishizawa, Mugio, Terumi Kashima, Masahiro Sakakibara, Akihito Wakabayashi, Kazuya Takahashi, Hiroko Takao, Hiroshi Imagawa, and Takumichi Sugihara. "Intramolecular Oxymercuration of 4-Hexen-1-ols: Kinetic vs. Thermodynamic Products Regulated by Mercuric Salts." HETEROCYCLES 54, no. 2 (2001): 629. http://dx.doi.org/10.3987/com-00-s(i)103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wei, Ning, Dong-Heon Lee, Narasimha N. Murthy, Zoltan Tyeklar, Kenneth D. Karlin, Susan Kaderli, Bernhard Jung, and Andreas D. Zuberbuehler. "Kinetic Preference without Thermodynamic Stabilization in the Intra- vs Intermolecular Formation of Copper-Dioxygen Complexes." Inorganic Chemistry 33, no. 21 (October 1994): 4625–26. http://dx.doi.org/10.1021/ic00099a010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Broustal, Garance, Xavier Ariza, Jean-Marc Campagne, Jordi Garcia, Yohan Georges, Angela Marinetti, and Raphaël Robiette. "A Stereoselective Approach to 1,3-Amino Alcohols Protected as Cyclic Carbamates: Kinetic vs. Thermodynamic Control." European Journal of Organic Chemistry 2007, no. 26 (September 2007): 4293–97. http://dx.doi.org/10.1002/ejoc.200700503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

HORVATH, A. "ChemInform Abstract: Catalysis and Regioselectivity in the Michael Addition of Azoles. Kinetic vs. Thermodynamic Control." ChemInform 27, no. 41 (August 4, 2010): no. http://dx.doi.org/10.1002/chin.199641128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Akhter, Zareen, Scott L. Ingham, Jack Lewis, and Paul R. Raithby. "Addition of some gold electrophiles to an octa-osmium carbonyl cluster: Thermodynamic vs. kinetic control." Journal of Organometallic Chemistry 474, no. 1-2 (July 1994): 165–71. http://dx.doi.org/10.1016/0022-328x(94)84061-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Buncel, Erwin, Julian M. Dust, Richard A. Manderville, and Richard M. Tarkka. "Regioselectivity of Meisenheimer complexation in reaction of oxygen-centred nucleophiles with picryl aryl ethers: Polar vs. SET mechanisms." Canadian Journal of Chemistry 81, no. 6 (June 1, 2003): 443–56. http://dx.doi.org/10.1139/v03-014.

Full text
Abstract:
Picryl alkyl ethers react with hydroxide and methoxide ions to give regioisomeric Meisenheimer (anionic σ-) adducts; the C-3 adduct is kinetically favoured and the C-1 adduct is thermodynamically favoured (K3T1 behaviour). In the current 400 MHz NMR spectroscopic study of the reactions of two picryl aryl ethers, picryl phenyl ether (PicOPh, 1) and picryl mesityl ether (PicOMes, 2), the charge localized nucleophiles OH– and MeO– displayed the same K3 regioselectivity as found with picryl alkyl ethers; attachment at C-1 leads to SNAr displacement of the aryloxide. In contrast, phenoxide (PhO–) and the sterically demanding 2,4,6-trimethylphenoxide (mesitoxide, MesO–) react with 1 and 2 to form the C-1 O-adduct as the product of kinetic control (i.e., K1 behaviour). These reactions were studied at low temperature (–40°C in acetonitrile-d3:dimethoxyethane-d10 1:1) and as a function of increasing temperature (–40°C to ambient). On the thermodynamic side, the C-1 PhO– O-adduct of 1 is also the more stable of the possible phenoxide O-adducts; it shows T1 regioselectivity within the manifold of O-adducts (K1T1), but the C-3 C-adduct (via para-attack of PhO–) is the ultimate thermodynamic product. The C-1 O-adducts formed by MesO– with 1 or 2 give way with time (or temperature increase) in favour of their C-3 regioisomers or a C-1,3-O-diadduct. Mesitoxide, therefore, displays K1T3 regioselectivity. Stereoelectronic stabilization is discussed as a factor influencing T1 regioselectivity in O-adduct formation. Frontier molecular orbital (FMO) interactions between the HOMO of the nucleophile and the LUMO of the picryl ether may play a role in the K1 preference of aryloxides. An alternative argument is presented based on a single electron (radical) transfer (SET) pathway for the aryloxide nucleophiles rather than the polar (SNAr) pathway for hydroxide and methoxide. The SET pathway also predicts a kinetic preference for C-1, as the C-1 position is of higher spin density than C-3 in the radical anion of the picryl ether and thus should be the preferred site for coupling by the aryloxide radical.Key words: anionic Meisenheimer adducts, regioselectivity, kinetic–thermodynamic control, FMO, stereoelectronic stabilization, single electron transfer (SET).
APA, Harvard, Vancouver, ISO, and other styles
39

Copéret, Christophe. "Stereoselectivity of supported alkene metathesis catalysts: a goal and a tool to characterize active sites." Beilstein Journal of Organic Chemistry 7 (January 5, 2011): 13–21. http://dx.doi.org/10.3762/bjoc.7.3.

Full text
Abstract:
Stereoselectivity in alkene metathesis is a challenge and can be used as a tool to study active sites under working conditions. This review describes the stereochemical relevance and problems in alkene metathesis (kinetic vs. thermodynamic issues), the use of (E/Z) ratio at low conversions as a tool to characterize active sites of heterogeneous catalysts and finally to propose strategies to improve catalysts based on the current state of the art.
APA, Harvard, Vancouver, ISO, and other styles
40

MARCHAND, A. P., B. GANGULY, W. H. WATSON, and S. G. BODIGE. "ChemInform Abstract: Thermodynamic vs. Kinetic Control in the Diels-Alder Cycloaddition of Cyclopentadiene to 2,3-Dicyano-p-benzoquinone: Kinetic Control Revisited." ChemInform 29, no. 46 (June 18, 2010): no. http://dx.doi.org/10.1002/chin.199846045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Guranova, Natalia I., Dmitry Dar'in, Grigory Kantin, Alexander S. Novikov, Olga Bakulina, and Mikhail Krasavin. "Fused vs. spiro: Kinetic, not thermodynamic preference may direct the reaction of α-carbonyl oxonium ylides." Tetrahedron Letters 60, no. 24 (June 2019): 1582–86. http://dx.doi.org/10.1016/j.tetlet.2019.05.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Masson, Eric, Xiaoyong Lu, Xiaoxi Ling, and Devin L. Patchell. "Kinetic vs Thermodynamic Self-Sorting of Cucurbit[6]uril, Cucurbit[7]uril, and a Spermine Derivative." Organic Letters 11, no. 17 (September 3, 2009): 3798–801. http://dx.doi.org/10.1021/ol901237p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bhattacharya, Deepanjan, and Vlad Sadtchenko. "Vapor-deposited non-crystalline phase vs ordinary glasses and supercooled liquids: Subtle thermodynamic and kinetic differences." Journal of Chemical Physics 142, no. 16 (April 28, 2015): 164510. http://dx.doi.org/10.1063/1.4918745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bott, Simon G., Alan P. Marchand, and Kaipenchery A. Kumar. "Thermodynamic vs. kinetic control in the Diels-Alder cycloaddition of cyclopentadiene to 2,3-dicyano-p-benzoquinone." Journal of Chemical Crystallography 26, no. 4 (April 1996): 281–86. http://dx.doi.org/10.1007/bf01677782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

M. Smith, Kevin, Kevin R. Gerzevske, and Jack J. Lin. "Kinetic vs Thermodynamic Product Distributions of Macrocyclic Tetrapyrrole Cyclization Products from 1,19-Disubstituted A,C-Biladiene Salts." HETEROCYCLES 37, no. 1 (1994): 207. http://dx.doi.org/10.3987/com-93-s29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Smith, Gregory M., John D. Carpenter, and Tobin J. Marks. "Intramolecular vs. intermolecular alkyl carbon-hydrogen bond activation. Complete thermodynamic and kinetic parameters for a reversible cyclometalation." Journal of the American Chemical Society 108, no. 21 (October 1986): 6805–7. http://dx.doi.org/10.1021/ja00281a059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Heyduk, Alan F., Tom G. Driver, Jay A. Labinger, and John E. Bercaw. "Kinetic and Thermodynamic Preferences in Aryl vs Benzylic C−H Bond Activation with Cationic Pt(II) Complexes." Journal of the American Chemical Society 126, no. 46 (November 2004): 15034–35. http://dx.doi.org/10.1021/ja045078k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nematpour, Manijeh, Elham Rezaee, Mehdi Jahani, and Sayyed Abbas Tabatabai. "Highly regioselective, base-catalyzed, biginelli-type reaction of aldehyde, phenylacetone and urea/thiourea kinetic vs. thermodynamic control." Journal of Sulfur Chemistry 39, no. 2 (November 26, 2017): 151–63. http://dx.doi.org/10.1080/17415993.2017.1402332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Freihammer, Patricia M., and Michael R. Detty. "ChemInform Abstract: Halogenation of 4-Phenyl-3-(phenylsulfonyl)-2-azetidinones with N-Halosuccinimides. Kinetic vs. Thermodynamic Control." ChemInform 32, no. 10 (March 6, 2001): no. http://dx.doi.org/10.1002/chin.200110107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bird, Paul, Jason Eames, Alex G. Fallis, Ray V. H. Jones, Marc Roddis, Claudio F. Sturino, Susan O'Sullivan, Stuart Warren, Martin S. Westwell, and Julia Worrall. "Reactions of episulfonium ions from the sulfenylation of alkenes and from phenylthio migration: Kinetic vs thermodynamic control." Tetrahedron Letters 36, no. 11 (March 1995): 1909–12. http://dx.doi.org/10.1016/0040-4039(95)00110-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography