Academic literature on the topic 'Kir3.2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kir3.2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kir3.2"

1

Pondugula, Satyanarayana R., Nithya N. Raveendran, Zuhal Ergonul, et al. "Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat." Physiological Genomics 24, no. 2 (2006): 114–23. http://dx.doi.org/10.1152/physiolgenomics.00006.2005.

Full text
Abstract:
The lumen of the inner ear has an unusually low concentration of endolymphatic Na+, which is important for transduction processes. We have recently shown that glucocorticoid receptors (GR) stimulate absorption of Na+ by semicircular canal duct (SCCD) epithelia. In the present study, we sought to determine the presence of genes involved in the control of the amiloride-sensitive Na+ transport pathway in rat SCCD epithelia and whether their level of expression was regulated by glucocorticoids using quantitative real-time RT-PCR. Transcripts were present for α-, β-, and γ-subunits of the epithelial sodium channel (ENaC); the α1-, α3-, β1-, and β3-isoforms of Na+-K+-ATPase; inwardly rectifying potassium channels [IC50 of short circuit current ( Isc) for Ba2+: 210 μM] Kir2.1, Kir2.2, Kir2.3, Kir2.4, Kir3.1, Kir3.3, Kir4.1, Kir4.2, Kir5.1, and Kir7.1; sulfonyl urea receptor 1 (SUR1); GR; mineralocorticoid receptor (MR); 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2; serum- and glucocorticoid-regulated kinase 1 (Sgk1); and neural precursor cell-expressed developmentally downregulated 4-2 (Nedd4-2). On the other hand, transcripts for the α4-subunit of Na+-K+-ATPase, Kir1.1, Kir3.2, Kir3.4, Kir6.1, Kir6.2, and SUR2 were found to be absent, and Isc was not inhibited by glibenclamide. Dexamethasone (100 nM for 24 h) not only upregulated the transcript expression of α-ENaC (∼4-fold), β2-subunit (∼2-fold) and β3-subunit (∼8-fold) of Na+-K+-ATPase, Kir2.1 (∼5-fold), Kir2.2 (∼9-fold), Kir2.4 (∼3-fold), Kir3.1 (∼ 3- fold), Kir3.3 (∼2-fold), Kir4.2 (∼3-fold ), Kir7.1 (∼2-fold), Sgk1 (∼4-fold), and Nedd4-2 (∼2-fold) but also downregulated GR (∼3-fold) and 11β-HSD1 (∼2-fold). Expression of GR and 11β-HSD1 was higher than MR and 11β-HSD2 in the absence of dexamethasone. Dexamethasone altered transcript expression levels (α-ENaC and Sgk1) by activation of GR but not MR. Proteins were present for the α-, β-, and γ-subunits of ENaC and Sgk1, and expression of α- and γ-ENaC was upregulated by dexamethasone. These findings are consistent with the genomic stimulation by glucocorticoids of Na+ absorption by SCCD and provide an understanding of the therapeutic action of glucocorticoids in the treatment of Meniere's disease.
APA, Harvard, Vancouver, ISO, and other styles
2

Bradley, Karri K., William J. Hatton, Helen S. Mason, et al. "Kir3.1/3.2 encodes an I KACh-like current in gastrointestinal myocytes." American Journal of Physiology-Gastrointestinal and Liver Physiology 278, no. 2 (2000): G289—G296. http://dx.doi.org/10.1152/ajpgi.2000.278.2.g289.

Full text
Abstract:
Expression of the Kir3 channel subfamily in gastrointestinal (GI) myocytes was investigated. Members of this K+ channel subfamily encode G protein-gated inwardly rectifying K+ channels ( I KACh) in other tissues, including the heart and brain. In the GI tract, I KACh could act as a negative feedback mechanism to temper the muscarinic response mediated primarily through activation of nonselective cation currents and inhibition of delayed-rectifier conductance. Kir3 channel subfamily isoforms expressed in GI myocytes were determined by performing RT-PCR on RNA isolated from canine colon, ileum, duodenum, and jejunum circular myocytes. Qualitative PCR demonstrated the presence of Kir3.1 and Kir3.2 transcripts in all smooth muscle cell preparations examined. Transcripts for Kir3.3 and Kir3.4 were not detected in the same preparations. Semiquantitative PCR showed similar transcriptional levels of Kir3.1 and Kir3.2 relative to β-actin expression in the various GI preparations. Full-length cDNAs for Kir3.1 and Kir3.2 were cloned from murine colonic smooth muscle RNA and coexpressed in Xenopus oocytes with human muscarinic type 2 receptor. Superfusion of oocytes with ACh (10 μM) reversibly activated a Ba2+-sensitive and inwardly rectifying K+current. Immunohistochemistry using Kir3.1- and Kir3.2-specific antibodies demonstrated channel expression in circular and longitudinal smooth muscle cells. We conclude that an I KAChcurrent is expressed in GI myocytes encoded by Kir3.1/3.2 heterotetramers.
APA, Harvard, Vancouver, ISO, and other styles
3

Brochiero, Emmanuelle, Bernadette Wallendorf, Dominique Gagnon, Raynald Laprade, and Jean-Yves Lapointe. "Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal KATP channel." American Journal of Physiology-Renal Physiology 282, no. 2 (2002): F289—F300. http://dx.doi.org/10.1152/ajprenal.00063.2001.

Full text
Abstract:
In rabbit proximal tubules, a basolateral ATP- and taurine-sensitive K+ channel (KATP) was shown to be involved in the regulation of the basolateral K+ conductance as a function of the rate of apical Na+ entry. To establish the molecular identity of this channel, we used degenerated primers to look for cDNA transcripts for an inwardly rectifying K+ channel (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1, SUR2A, and SUR2B) in a cDNA library obtained from rabbit proximal tubules. PCR products were found only for Kir6.1, SUR2A, and SUR2B. Expression of Kir6.1 in Xenopusoocytes generated an additional K+ current that was found to be sensitive to external barium and intracellular taurine and to changes in intracellular ATP concentrations. To study the specificity of the taurine sensitivity, intracellular taurine was tested on several members of the Kir family expressed in Xenopus oocytes. K+ currents induced by Kir1.1A, Kir2.1, Kir3.2, Kir4.1, or Kir5.1 were insensitive to taurine, but all tested combinations of Kir6.x with or without the SUR subunit were significantly inhibited by taurine. This study suggests that the taurine-sensitive KATP channel of rabbit proximal tubules is formed by a combination of Kir6.1 plus SUR2A and/or SUR2B.
APA, Harvard, Vancouver, ISO, and other styles
4

Fang, Yun, Gernot Schram, Victor G. Romanenko, et al. "Functional expression of Kir2.x in human aortic endothelial cells: the dominant role of Kir2.2." American Journal of Physiology-Cell Physiology 289, no. 5 (2005): C1134—C1144. http://dx.doi.org/10.1152/ajpcell.00077.2005.

Full text
Abstract:
Inward rectifier K+ channels (Kir) are a significant determinant of endothelial cell (EC) membrane potential, which plays an important role in endothelium-dependent vasodilatation. In the present study, several complementary strategies were applied to determine the Kir2 subunit composition of human aortic endothelial cells (HAECs). Expression levels of Kir2.1, Kir2.2, and Kir2.4 mRNA were similar, whereas Kir2.3 mRNA expression was significantly weaker. Western blot analysis showed clear Kir2.1 and Kir2.2 protein expression, but Kir2.3 protein was undetectable. Functional analysis of endothelial inward rectifier K+ current ( IK) demonstrated that 1) IK current sensitivity to Ba2+ and pH were consistent with currents determined using Kir2.1 and Kir2.2 but not Kir2.3 and Kir2.4, and 2) unitary conductance distributions showed two prominent peaks corresponding to known unitary conductances of Kir2.1 and Kir2.2 channels with a ratio of ∼4:6. When HAECs were transfected with dominant-negative (dn)Kir2.x mutants, endogenous current was reduced ∼50% by dnKir2.1 and ∼85% by dnKir2.2, whereas no significant effect was observed with dnKir2.3 or dnKir2.4. These studies suggest that Kir2.2 and Kir2.1 are primary determinants of endogenous K+ conductance in HAECs under resting conditions and that Kir2.2 provides the dominant conductance in these cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Konstas, Angelos-Aristeidis, Christoph Korbmacher, and Stephen J. Tucker. "Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels." American Journal of Physiology-Cell Physiology 284, no. 4 (2003): C910—C917. http://dx.doi.org/10.1152/ajpcell.00479.2002.

Full text
Abstract:
Heteromultimerization between different inwardly rectifying (Kir) potassium channel subunits is an important mechanism for the generation of functional diversity. However, little is known about the mechanisms that control this process and that prevent promiscuous interactions in cells that express many different Kir subunits. In this study, we have examined the heteromeric assembly of Kir5.1 with other Kir subunits and have shown that this subunit exhibits a highly selective interaction with members of the Kir4.0 subfamily and does not physically associate with other Kir subunits such as Kir1.1, Kir2.1, and Kir6.2. Furthermore, we have identified regions within the Kir4.1 subunit that appear to govern the specificity of this interaction. These results help us to understand the mechanisms that control Kir subunit recognition and assembly and how cells can express many different Kir channels while maintaining distinct subpopulations of homo- and heteromeric channels within the cell.
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Dou, Ping Zheng, Chen Tan, Si Hui Huang, Dan Li, and Jian Huang. "Influence of Continuous Training on Atrial Myocytes IK1 and IKAch and on Induction of Atrial Fibrillation in a Rabbit Model." Cardiology Research and Practice 2018 (December 19, 2018): 1–10. http://dx.doi.org/10.1155/2018/3795608.

Full text
Abstract:
Background. Elucidation of mechanisms underlying continuous training-related atrial fibrillation (AF) may inform formulation of novel therapeutic approaches and training method selection. This study was aimed at assessing mechanisms underlying continuous training-induced AF in an animal model. Methods. Healthy New Zealand rabbits were divided into three groups (n=8 each), namely, control (C), and moderate intensity (M), and high intensity (H) continuous training according to treadmill speed. Atrial size andintrinsic and resting heart rates were measured by transthoracic echocardiography before, and 8 and 12 weeks after training. Using a Langendorff perfusion system, AF was induced by S1S2 stimulation and the induction rate was recorded. Atrial IK1 and IKAch ion current densities were recorded using whole-cell patch-clamp technique in isolated atrial myocytes. Changes in atrial Kir2.1, Kir2.2, Kir3.1, and Kir3.4 mRNA expression were assessed by reverse transcriptase-coupled polymerase chain reaction. Results. After 8 and 12 weeks, Groups M and H vs. Group C had greater (all P<0.05) atrial anteroposterior diameter; greater incidence of AF (60% and 90% vs. 45%, respectively; P<0.05, also between Groups H and M); and greater atrial IKAch current density. In Group H, Kir2.1 and Kir2.2 mRNA expression in the left and right atria was increased (P<0.05, vs. Groups C and M) as was left atrial Kir3.1 and Kir3.4 mRNA expression (P<0.05, vs. Group C). Conclusion. In a rabbit model, continuous training enlarges atrial diameter leading to atrial structural and electrical remodeling and increased AF incidence.
APA, Harvard, Vancouver, ISO, and other styles
7

Richard-Lalonde, Melissa, Karim Nagi, Nicolas Audet та ін. "Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via δ-Opioid Receptors". Molecular Pharmacology 83, № 2 (2012): 416–28. http://dx.doi.org/10.1124/mol.112.081950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leonoudakis, D., W. Mailliard, K. Wingerd, D. Clegg, and C. Vandenberg. "Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97." Journal of Cell Science 114, no. 5 (2001): 987–98. http://dx.doi.org/10.1242/jcs.114.5.987.

Full text
Abstract:
The strong inwardly rectifying potassium channels Kir2.x are involved in maintenance and control of cell excitability. Recent studies reveal that the function and localization of ion channels are regulated by interactions with members of the membrane-associated guanylate kinase (MAGUK) protein family. To identify novel interacting MAGUK family members, we constructed GST-fusion proteins with the C termini of Kir2.1, Kir2.2 and Kir2.3. GST affinity-pulldown assays from solubilized rat cerebellum and heart membrane proteins revealed an interaction between all three Kir2.x C-terminal fusion proteins and the MAGUK protein synapse-associated protein 97 (SAP97). A truncated form of the C-terminal GST-Kir2.2 fusion protein indicated that the last three amino acids (S-E-I) are essential for association with SAP97. Affinity interactions using GST-fusion proteins containing the modular domains of SAP97 demonstrate that the second PSD-95/Dlg/ZO-1 (PDZ) domain is sufficient for interaction with Kir2.2. Coimmunoprecipitations demonstrated that endogenous Kir2.2 associates with SAP97 in rat cerebellum and heart. Additionally, phosphorylation of the Kir2.2 C terminus by protein kinase A inhibited the association with SAP97. In rat cardiac ventricular myocytes, Kir2.2 and SAP97 colocalized in striated bands corresponding to T-tubules. In rat cerebellum, Kir2.2 was present in a punctate pattern along SAP97-positive processes of Bergmann glia in the molecular layer, and colocalized with astrocytes and granule cells in the granule cell layer. These results identify a direct association of Kir2.1, Kir2.2 and Kir2.3 with the MAGUK family member SAP97 that may form part of a macromolecular signaling complex in many different tissues.
APA, Harvard, Vancouver, ISO, and other styles
9

Szuts, Viktoria, Dalma Ménesi, Zoltán Varga-Orvos, et al. "Altered expression of genes for Kir ion channels in dilated cardiomyopathy." Canadian Journal of Physiology and Pharmacology 91, no. 8 (2013): 648–56. http://dx.doi.org/10.1139/cjpp-2012-0413.

Full text
Abstract:
Dilated cardiomyopathy (DCM) is a multifactorial disease characterized by left ventricular dilation that is associated with systolic dysfunction and increased action potential duration. The Kir2.x K+ channels (encoded by KCNJ genes) regulate the inward rectifier current (IK1) contributing to the final repolarization in cardiac muscle. Here, we describe the transitions in the gene expression profiles of 4 KCNJ genes from healthy or dilated cardiomyopathic human hearts. In the healthy adult ventricles, KCNJ2, KCNJ12, and KCNJ4 (Kir2.1–2.3, respectively) genes were expressed at high levels, while expression of the KCNJ14 (Kir2.4) gene was low. In DCM ventricles, the levels of Kir2.1 and Kir2.3 were upregulated, but those of Kir2.2 channels were downregulated. Additionally, the expression of the DLG1 gene coding for the synapse-associated protein 97 (SAP97) anchoring molecule exhibited a 2-fold decline with increasing age in normal hearts, and it was robustly downregulated in young DCM patients. These adaptations could offer a new aspect for the explanation of the generally observed physiological and molecular alterations found in DCM.
APA, Harvard, Vancouver, ISO, and other styles
10

Masia, Ricard, Daniela S. Krause, and Gary Yellen. "The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver." American Journal of Physiology-Cell Physiology 308, no. 3 (2015): C264—C276. http://dx.doi.org/10.1152/ajpcell.00176.2014.

Full text
Abstract:
Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K+-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K+ concentration in a Nernstian fashion, as expected for a K+-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba2+, Cs+, and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Kir3.2"

1

Adney, Scott. "Protein Kinase C Dependent Inhibition of Kir3.2 (GIRK2) Channel Activity and Its Molecular Determinants." VCU Scholars Compass, 2013. http://scholarscompass.vcu.edu/etd/3214.

Full text
Abstract:
Inwardly rectifying potassium (Kir) channels are critically important for regulating resting membrane potential in excitable cells, a job underscored by the severe pathophysiology associated with channel dysfunction. While all Kir channels require the activating lipid PIP2, many of these channels have diverse modulatory factors that couple to PIP2-dependent gating. Channels in the Kir3 (GIRK) family, in particular, have several co-activating elements, including G-protein betagamma subunits, ethanol, and sodium. During stimulation of Gq-coupled receptors, downstream activation of Protein Kinase C can phosphorylate and inhibit Kir3 channels, yet the mechanism of inhibition and phosphorylation sites are incompletely understood. We took a combined experimental and computational approach using neuronal Kir3.2 to investigate how phosphorylation at a putative PKC site identified in Kir3.1/3.4 could lead to channel inhibition. Kir3.2 inhibition was found to depend on the phosphorylation state of Ser-196, although mutagenesis data suggest it functions as an allosteric regulator of PKC inhibition. MD simulations identified a molecular switch whereby phosphorylation of Ser-196 recruits a critical gating residue, Arg-201, away from the sodium coordination site Asp-228. Neutralization of Ser-196 or Arg-201 resulted in less active channels which exhibited increased sensitivity to PKC inhibition. Additionally the interplay of PIP2 and PKC inhibition was examined in depth using homomeric Kir3.2, revealing that increases in channel-PIP2 interactions limit sensitivity to PKC inhibition, whereas low levels of PIP2 increase PKC sensitivity. Neutralization of Ser-196 uncoupled PKC inhibition from this PIP2 dependence. These studies suggest a model whereby PKC inhibition can occur along PIP2-dependent and PIP2-independent pathways, depending on the phosphorylation state of Ser-196.
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Claas [Verfasser], and Horst [Akademischer Betreuer] Lemoine. "Charakterisierung neuartiger K(ATP)-Kanalöffner vom Benzothiadiazin-, Benzofuran-, Benzothiophen- und Benzothiazol-Typ an HEK 293-(SUR2B/Kir6.1)- und CHO-(SUR1/Kir6.2)-Zellen - Funktioneller Nachweis einer dritten Bindungsstelle für Benzothiadiazin-Derivate am (SUR2B/Kir6.1)-K(ATP)-Kanal / Claas Schmidt. Gutachter: Horst Lemoine." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2015. http://d-nb.info/1071947117/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Měsíčková, Klára. "Elektrofyziologická charakterizace membránového kanálu Kir2.1." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-377661.

Full text
Abstract:
The topic of this thesis is electrophysiological characterization of Kir2.1 membrane channel. Inward rectifier potassium channel Kir2.1 is located in muscular, heart and nerve cells and its dysfunction causes various diseases. Practical part of this stage is focused on cultivation of the HEK293T cell line that is used to transfection of the plasmid Kir2.1 and subsequent measurement of the ionic current through the electrophysiological method patch-clamp in whole-cell mode.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Runping. "Mechanistic Insight into Subunit Stoichiometry for KIR Channel Gating: Ligand Binding, Gating, Binding-Gating Coupling, Coordination, and Cooperativity." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/biology_diss/27.

Full text
Abstract:
Ligand-gated ion channels couple intra- and extracellular chemical signals to cellular excitability. In response to a specific ligand, these channels change their permeability to certain ions by opening or closing their ion conductive pathway, a controlling mechanism known as channel gating. Although recent studies with X-ray crystallography and site-directed mutagenesis have revealed several structures potentially important for channel gating, the gating mechanism is still elusive. Ligand-dependent channel gating involves a series of transient events and asymmetric movements of individual subunits. Understanding of these events appears to be a challenge to current approaches in gating studies by using the homomeric wild-type or mutant channels. I therefore took an alternative approach by constructing heteromeric channels. Subunit stoichiometric studies of the Kir1.1 channel showed that a minimum of one functional subunit was required for the pH-dependent gating of the channel. Four subunits in this channel were coordinated as dynamic functional dimers. In Kir6.2 channel, stoichiometry for proton-binding was almost identical to that for channel gating in the M2 helix, suggesting a one-to-one direct coupling of proton binding in C-terminus to channel gating in M2 helix. Positive cooperativity was suggested among subunits in both the proton binding and channel gating. Ligand binding can be differentiated from channel gating by studying the ATP-dependent gating of Kir6.2 channel. Disruptions in ATP binding were found to change both the potency and efficacy of the concentration-dependent curves, while the baseline activity instead of maximum inhibition was affected by disruptions of channel gating. Four subunits in the Kir6.2 channel undergo negative cooperativity in ATP binding and positive cooperativity in channel gating. The ligand binding was coupled to the gating mechanism in the same subunit and neighboring subunits, although the intrasubunit coupling was more effective. These results are well described with the operational model which we have applied to ion channel studies for the first time. By manipulating the relative distance and the interaction of two transmembrane helices, the inner helix bundle of crossing was found to not only serve as a gate but also determine the consequence of ligand binding.
APA, Harvard, Vancouver, ISO, and other styles
5

Mankouri, Jamel. "Genetic mutations in the Kir6.2 subunit of KATP channels which cause CHI." Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/333/.

Full text
Abstract:
The role of KATP channels have been best characterized in the pancreas where they are crucial for the regulation of insulin secretion from pancreatic ?-cells. In the open state, KATP channels maintain the ?-cell membrane resting potential inhibiting insulin secretion. In response to elevated glucose levels KATP channels close mediating membrane depolarization, opening of voltage-gated Ca 2+ channels, and subsequent insulin secretion. KATP channel current is controlled both by the metabolic regulation of the channel mediated via changes in the [ATP/ADP] ratio and the cell surface density of channels. Using functional and cell biological approaches the current study identifies three trafficking motifs in the Kir6.2 subunit controlling the surface density of KATP channels each with an associated genetic disorder. The first, a di-acidic motif (280DXE282) was found to mediate efficient export of the channels from the endoplasmic reticulum. A mutation in this motif,(E282K), which causes congenital hyperinsulinism, inhibited this export thereby reducing surface channel density. The second, a tyrosine-based motif (330YSKF333) was found to be necessary for clathrin-mediated internalization of the surface expressed channels. Disruption of this motif through mutations (Y330C & F3331)causing permanent neonatal diabetes mellitus inhibited internalization, enhancing surface channel density. Finally, an acidic di-leucine motif (352DRSLL356) was found to regulate rapid recycling of internalized KATP channels. Disruption of this motif through a non-insulin dependent diabetes mellitus causing mutation (L355P) enhanced recycling and channel surface expression. In summary, the current study identified motifs that control biosynthetic and endocytotic trafficking pathways and thereby the cell surf?ce expression of pancreatic KATP channels. More importantly, the study reports that genetic mutations can disrupt each of these motifs and alter the channel cell surface density, thereby causing disease. Mutations that prevent biosynthetic export cause congenital hyperinsulinism whereas mutations that inhibit internalisation or enhance recycling cause diabetes mellitus. The study thus provides a link between genetic mutations, trafficking defects and disorders of insulin secretion.
APA, Harvard, Vancouver, ISO, and other styles
6

Schulz, Miriam. "Untersuchungen zur Interaktion aktivierender und inhibitorischer Nukleotide bei der Regulation von SUR1-Kir6.2-Kanälen." [S.l. : s.n.], 2005. http://www.gbv.de/dms/bs/toc/500892156.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mountadem, Sarah. "Contribution des canaux astrocytaires Kir4.1 dans l'allodynie mécanique." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC060.

Full text
Abstract:
La douleur inflammatoire chronique est une affection fréquente et invalidante qui est maintenue par une sensibilisation centrale, responsable de l’apparition de l’hypersensibilité douloureuse. Alors que la réaction microgliale contribue à l'apparition de la douleur chronique, l’activation des astrocytes et des médiateurs associés semble jouer un rôle essentiel dans le maintien de la douleur chronique et de la sensibilisation centrale. Les canaux potassiques entrants rectifiants Kir4.1 sont majoritairement exprimés par les astrocytes et sont impliqués dans les fonctions physiologiques astrocytaires, en particulier en contrôlant leur potentiel de membrane au repos. Ils interviennent aussi dans les interactions astrocytes-neurones en contrôlant la recapture du glutamate et la concentration extracellulaire de potassium (K+). De plus, il a été démontré que le dysfonctionnement de ces canaux est associé à plusieurs pathologies du système nerveux central, notamment l'épilepsie, la maladie de Huntington, la dépression ou la sclérose amyotrophique latérale. Cependant, le rôle du canal Kir4.1 central dans la douleur n'a pas été clairement étudié. Dans ce projet, nous avons exploré l'implication des canaux Kir4.1 astrocytaires du sous-noyau caudal (Sp5C) du trijumeau dans la chronicisation de l'hypersensibilité à la douleur inflammatoire trigéminale. En combinant des techniques biochimiques, électrophysiologiques et comportementales, nous avons montré chez le rat que l’allodynie mécanique provoquée par l’injection sous-cutanée d’une subtance algogène (Adjuvant Complet de Freund, CFA) est associée à une activation des astrocytes, qui se traduit par des changements de leur morphologie et de leurs propriétés intrinsèques, dont une diminution drastique des courants Kir4.1. Cette diminution est corrélée à une baisse de l’expression protéique des canaux Kir4.1. En outre, ces modifications sont associées une augmentation de la concentration extracellulaire de K+, qui in vitro,est responsable d'une augmentation de l'excitabilité neuronale. Par ailleurs, la déplétion virale des canaux Kir4.1 dans les astrocytes trigéminaux mime les effets du CFA en déclenchant une allodynie mécanique persistante et une augmentation de l’excitabilité neuronale, tandis que la restauration des canaux Kir4.1 sur des animaux CFA prévient l’allodynie mécanique et l’hyperexcitabilité des neurones trigéminaux. L’ensemble des résultats montre pour la première fois que le déficit du canal astroglial Kir4.1 dans le Sp5C sous-tend l'allodynie mécanique inflammatoire, et pourrait donc offrir de nouvelles pistes thérapeutiques pour ce symptôme invalidant<br>Chronic inflammatory pain is a frequent and disabling condition that is significantly maintained by centralsensitization, which results in pain hypersensitivity. While microgliosis seems to contribute to the onset ofchronic pain, reactive astrocytes and associated chemical mediators play a critical role in chronic painmaintenance and central sensitization.Inward rectifier potassium channels Kir4.1 are mainly expressed by astrocytes and are known to beinvolved in astrocytic physiological functions, particularly by controlling their resting membrane potential,but also in astrocyte-neuron interactions by controlling the glutamate uptake and extracellular potassium(K+) concentration. Accordingly, it has been shown that dysfunction of these channels is associated withseveral central nervous system pathologies including epilepsy, Huntington disease, depression or lateralamyotrophic sclerosis. However, the role of central astroglial Kir4.1 in pain has not been investigated.Here, we explored the involvement of the medullary dorsal horn (MDH) astroglial Kir4.1 channels inthe maintenance phase of trigeminal inflammatory pain hypersensitivity. By combining biochemical,electrophysiological and behavioral techniques, we showed that MDH astrocytes from inflamed rats havesmaller Kir4.1 currents, correlated with a decrease in Kir4.1 protein expression. Moreover, thesemodifications are associated with elevated extracellular K+ concentration, which increased MDH neuronalexcitability in vitro. Viral delivery of a dominant negative form of Kir4.1 channels to MDH astrocytesmimics CFA effects by inducing neuronal hyperexcitability and mechanical allodynia. Finally, restorationof Kir4.1 function recovered aspects of neuronal dysfunction and attenuated pain behaviors in CFA-injectedanimals.Together, these findings suggest that astroglial Kir4.1 channel deficit underlies inflammatory staticmechanical allodynia, and thus may offer novel avenues for the treatment of this debilitating symptom
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Lai-Hua. "Wortmannin, an inhibitor of phosphatidylinositol kinase, blocks the MgATP-dependent recovery of Kir6.2-SUR2A channel." Kyoto University, 1999. http://hdl.handle.net/2433/181696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chever, Oana. "Implication du canal glial Kir4.1 dans la régulation du potassium extracellulaire : étude in vivo chez la souris knock-out Kir4.1 sous anesthésie." Thesis, Université Laval, 2008. http://www.theses.ulaval.ca/2008/25879/25879.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Principalli, Maria Antonietta. "Etude structure-fonction du canal Kir6.2 et de son couplage avec des partenaires naturels et artificiels." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAV014/document.

Full text
Abstract:
Les canaux potassiques sensibles à l'ATP (K-ATP) jouent un rôle fondamental au sein de la cellule, puisqu'ils ajustent le potentiel de membrane en fonction de l'état métabolique. Ils combinent deux types de protéines: le récepteur des Sulfonylurée (SUR), protéine régulatrice faisant partie des transporteurs ABC, et le canal potassique rectifiant entrant Kir6. Elles s'associent en formant un hétérooctamère (4 SUR/4 Kir6) d'une taille de ~ 1MDa. A l'heure actuelle, l'unique structure disponible de ce complexe est une structure basse-résolution de 18 Å qui ne permet pas de visualiser correctement l'arrangement des différentes sous-unités. Le but principal de ce projet de thèse était d'obtenir des informations à la fois structurales et fonctionnelles sur le couplage entre Kir6.2 et SUR.Il existe 2 isoformes du Kir6 humain (Kir6.1 et 6.2) et 3 isoformes de SUR : SUR1, principalement exprimée avec Kir6.2 dans les cellules β pancréatiques et les neurones ; SUR2A, très abondante avec Kir6.1 dans les muscles cardiaques et squelettiques ; et SUR2B, présent avec Kir6.1 au niveau des muscles lisses. La façon dont SUR est capable de moduler l'ouverture du canal en réponse à la fixation d'un ligand est encore mal comprise.Au sein du canal K-ATP, SUR a un rôle de modulateur du gating de Kir6.2. Il a été montré que trois résidus (E1305, I1910, L1313) dans SUR2A, étaient impliqués dans la « voie d'activation » liant la fixation d'un ligand sur SUR2A et l'ouverture du canal Kir6. Afin d'examiner le rôle des résidus correspondants au sein de SUR1, nous avons réalisé des chimères entre SUR1 et le transporteur ABC MRP1 (qui n'interagit pas avec Kir6.2) et utilisé la technique du patch-clamp pour évaluer leur fonctionnalité. Nos résultats ont montré que les mêmes résidus au sein de SUR1 et SUR2A sont impliqués dans l'association fonctionnelle avec Kir6.2, mais que les spécificités au niveau de la chaine latérale pourraient expliquer les propriétés propres aux canaux pancréatiques et cardiaques. En effet, dans le pancréas, les canaux SUR1/Kir6.2 sont partiellement actifs au repos tandis que les canaux SUR2A/Kir6.2 du cœur sont principalement fermés. Cette spécificité peut être expliquée par les interactions spécifiques de SUR1 et SUR2A avec Kir6.2.La participation du canal Kir6.2 dans le couplage avec SUR ne peut être facilement étudiée puisque la région allant du N-terminal de Kir6.2 jusqu'à sa première hélice est physiquement associée à SUR. Des mutations à ce niveau pourraient affecter à la fois l'interaction physique et fonctionnelle avec SUR. Pour passer outre cet obstacle, nous avons utilisé la technologie ICCR développée dans notre laboratoire. Les ICCRs sont des protéines artificielles créées par couplage physique du C-terminal d'un RCPG au N-terminal de Kir6.2. Cette technologie permet l'étude de la fonction du N-ter de Kir6.2 puisque la fusion entre le RCPG et le canal assure une association fonctionnelle : le signal électrique généré par le canal ionique est directement lié à la fixation du ligand sur le RCPG. Le domaine reliant les deux protéines est essentiel pour la fonction de l'ICCR et sa longueur affecte la régulation du canal. De façon intéressante, deux ICCRs de même longueur mais ayant 9 résidus de différence présentent deux phénotypes différents : un fonctionnel, un inactif. L'ICCR inatif est caractérisé par la perte des résidus 26 à 34 du N-ter contenant 5 arginines. Nous avons réalisé la cartographie fonctionnelle de ces résidus essentiels pour la régulation de Kir6.2. Successivement, nous avons effectué les mêmes mutations d'arginines au sein du canal naturel K-ATP, mais n'avons pas observé de différence entre le canal muté et sauvage. Ces résultats suggèrent qu'il existe au moins deux voie de régulation pour le gating de Kir6.2 : une via les arginines du N-ter (utilisé par les RCPGs) et l'autre, toujours inconnue, utilisée par SUR<br>ATP-sensitive potassium (K-ATP) channels play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the SulfonylUrea Receptor (SUR), a protein of the ABC transporters family, and the inward rectifier K+ channel Kir6. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6) of ~ 1MDa. A high-resolution structure of the complex is still missing. To date, only a 18 Å structure of the full complex is available. Unfortunately, the low resolution prevent visualization of subunits arrangement. This PhD project aimed at obtaining structural and functional information on the functional coupling between Kir6.2 and SUR. Structural studies are still in progress.While 2 isoforms of the human Kir6 protein exists (Kir6.1 and 6.2), 3 isoforms of the SUR protein are known: SUR1, mostly expressed in pancreatic β-cells and neurons mainly with Kir6.2, SUR2A, abundant in cardiac and skeletal muscle mainly with Kir6.2, and SUR2B, found in smooth muscle mostly with Kir6.1. How SUR modulates channel gating in response to the binding of ligands is still poorly understood.The SUR protein belongs to a family of transporters but in K-ATP works as a gating modulator. How a 'transporter' modulate Kir6 gating? In SUR2A three residues (E1305, I1310, L1313) were found to be implicated in the ‘activation pathway' linking binding of openers to SUR2A and channel opening. To examine the role of the matching residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter MRP1 (which does not interact with Kir6.2), and used patch clamp to assess the functionality of SUR1/MRP1 K-ATP chimeric channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display side-chain specificities that could account for the contrasted properties of pancreatic and cardiac K-ATP channels. In fact, in pancreas, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2.The participation of the Kir6.2 channel in the coupling with SUR cannot be easily studied, as the region spanning from Kir6.2 N-terminal to its first helix is in thigh physical association with SUR. Mutations at this level could affect both physical and functional interaction with the regulatory subunit. To overcome this obstacle we used the ICCR technology developed in our laboratory. ICCRs are artificial proteins created by physical and functional linkage of a GPCR C-terminus to the Kir6.2 N-terminus. ICCRs provide a unique method to study the function of the Kir6.2 channel N-terminal, as the fusion between GPCR and channel ensure physical association. In ICCRs the electrical signal generated by the ion channel is directly linked to ligand binding on the GPCR. The domain linking GPCR and channel is crucial for ICCR function and its length affects channel regulation. Interestingly, two ICCRs, having identical linker length but nine residues differences at the fusion point, showed different phenotypes: one functional, one inactive (no channel regulation). The inactive ICCR is characterized by the lack of residues 26 to 34 in the channel N-terminus containing 5 arginines. We functionally mapped these arginines and identify specific residues essential for Kir6.2 regulation. Successively, we transferred this knowledge to the K-ATP mutating the previously found essential arginines. Here, we did not observe any change compared to wild-type channels. This result suggest that there are at least two ways to modulate Kir6.2 gating: one through the arginines in the N-terminal (used by the GPCR) and another, still unknown, used by SUR
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Kir3.2"

1

Hesse, Lautaro Daniel. Estudio del impacto de la ausencia de Kir6.2/K-ATP en la regeneración hepática posterior a una hepatectomía parcial. Teseo, 2022. http://dx.doi.org/10.55778/ts878848969.

Full text
Abstract:
&lt;p&gt;Comprender los mecanismos que rigen la regeneración hepática es crucial para el manejo apropiado de los procesos regenerativos y el desarrollo de nuevas terapias en situaciones donde es necesario recuperar la masa hepática perdida. Se plantea la siguiente pregunta: ¿Existe alguna relación entre la expresión de Kir6.2 y la regeneración hepática posterior a una hepatectomía parcial (HP)? Se utilizaron ratones de las cepas C57BL/6 (WT, &lt;i&gt;wild-type&lt;/i&gt;) como animales control, y ratones &lt;i&gt;knockout&lt;/i&gt; para Kir6.2 (Kir-/-), los cuales fueron sometidos a HP de dos tercios. La regeneración hepática posterior a la hepatectomía se evaluó a diferentes tiempos que representan las distintas fases de la regeneración. Se determinó el índice peso hígado/peso corporal (PH/PC). Se determinó el perfil de las transaminasas séricas. Se detectó el antígeno nuclear de proliferación celular (PCNA) y ciclina D1. Se estableció el índice apoptótico mediante la determinación entre la proteína Bax y las proteínas antiapoptóticas Bcl-2/Bcl-xL. En conclusión, la ausencia de la proteína Kir6.2 tiene un impacto negativo en la proliferación que se produce luego de la resección de una parte de la masa hepática. En los ratones carentes de Kir6.2 la regeneración también puede verse comprometida por una mayor tasa de apoptosis. El presente estudio proporciona, por primera vez, evidencias claras de que la proteína Kir6.2 participa en el fenómeno regenerativo luego de una HP de dos tercios en ratones.&lt;/p&gt;
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kir3.2"

1

Flanagan, Sarah E., and Sian Ellard. "Identification of Mutations in the Kir6.2 Subunit of the KATP Channel." In Methods in Molecular Biology. Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-526-8_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cuppoletti, John, Kirti P. Tewari, Ann M. Sherry, and Danuta H. Malinowska. "Kir2.1 K+ Channels of the Gastric Parietal Cell." In Mechanisms and Consequences of Proton Transport. Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0971-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Litt, Michael J., Roger D. Cone, and Masoud Ghamari-Langroudi. "Characterization of MC4R Regulation of the Kir7.1 Channel Using the Tl+ Flux Assay." In Methods in Molecular Biology. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7362-0_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fernandes, Carlos A. H., and Catherine Vénien-Bryan. "Human Kir2.1 Potassium Channel: Protocols for Cryo-EM Data Processing and Molecular Dynamics Simulations." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3818-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Boer, Teun P., Toon A. B. van Veen, Marien J. C. Houtman, et al. "Inhibition of Cardiomyocyte Automaticity by Electrotonic Application of Inward Rectifier Current from Kir2.1 Expressing Cells." In Biopacemaking. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72110-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Papadopoulos, Nestoras, Stefan M. Winter, Kai Härte, Melanie Kaiser, Clemens Neusch, and Swen Hülsmann. "Possible Roles of the Weakly Inward Rectifying K+ Channel Kir4.1 (KCNJ10) in the Pre-Bötzinger Complex." In Integration in Respiratory Control. Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-73693-8_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hernandez, Ciria C., Luis E. Gimenez, and Roger D. Cone. "Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex." In Methods in Molecular Biology. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3818-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pirnat, Samo, Katja Fink, Matjaž Stenovec, Marko Kreft, and Robert Zorec. "Unveiling Ketamine’s Influence on Astrocytic Kir4.1 Channels Through Multimodal Analysis: Confocal Microscopy, Immunocytochemistry, Fluorescence Analysis, and Electrophysiology." In Methods in Molecular Biology. Springer US, 2025. https://doi.org/10.1007/978-1-0716-4366-2_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beschorner, Rudi. "Differentiating Choroid Plexus Tumors from Metastatic Carcinomas: Use of Inwardly Rectifying K+ Channel KIR7.1 and Excitatory Amino Acid Transporter-1." In Tumors of the Central Nervous System. Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7602-9_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seitz, Viola, Philip Stötzner, Dominika Labuz, and Halina Machelska. "Patch Clamp Analysis of Opioid-Induced Kir3 Currents in Mouse Peripheral Sensory Neurons Following Nerve Injury." In Methods in Molecular Biology. Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0884-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Kir3.2"

1

Le Ribeuz, Hélène, Mélanie Lambert, Angèle Boet, et al. "SUR1/Kir6.2 potassium channel a new actor involved in pulmonary arterial hypertension." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.3561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chester, Cariad, Sean Lim, Anne Marie-Cardine, et al. "Abstract 2473: KIR3DL2 is a novel target for antibody-therapy of T cell lymphomas." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Le Ribeuz, Hélène, Mary Dutheil, Veronique Capuano, et al. "Late Breaking Abstract - Implication of the KATP Sur2b/Kir6.1 in the physiopathology of pulmonary arterial hypertension." In ERS International Congress 2021 abstracts. European Respiratory Society, 2021. http://dx.doi.org/10.1183/13993003.congress-2021.pa600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Beckner, Marie E. "Abstract 3726: Expressions of genes for connexins and Kir5.1 differ between oligodendrogliomas and glioblastomas in patients treated with anticonvulsants." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

HIBINO, H., K. DOI, T. KUBO, et al. "EXPRESSION AND SPECIFIC SUBCELLULAR LOCALIZATION OF AN INWARDLY RECTIFYING K+ CHANNEL, KIR4.1/KAB-2, IN THE RAT INNER EAR." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793980_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marie-Cardine, Anne, Nicolas Viaud, Arnaud Dujardin, et al. "Abstract 651:Ex vivoandin vivocharacterization of IPH4102, a humanized anti-KIR3DL2 antibody for the treatment of cutaneous T-cell lymphomas." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McClenahan, Samantha, Dongsoo Lee, and Jerod Denton. "Pharmacological Rescue of Human Disease Mutations inKCNJ10andKCNJ16by Novel Kir4.1/5.1 Potentiator, VU0493206." In ASPET 2023 Annual Meeting Abstracts. American Society for Pharmacology and Experimental Therapeutics, 2023. http://dx.doi.org/10.1124/jpet.122.292200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ISHIHARA, KEIKO. "TWO MODES OF POLYAMINE BLOCK REGULATING THE CARDIAC K+ CURRENT IK1 AS REVEALED BY A STUDY OF THE KIR2.1 CHANNEL." In Proceedings of the 31st International Congress on Electrocardiology. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702234_0067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Viaud, Nicolas, Nathalie Granier, Stephanie Zerbib, et al. "Abstract 4733: Novel therapeutic and diagnostic antibodies against KIR3DL2, a unique tumor antigen overexpressed on subtypes of T Cell Lymphomas ." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mandge, Darshan, Pooja Rajesh Shukla, Archit Bhatnagar, and Rohit Manchanda. "Computational Model for Cross-Depolarization in DRG Neurons via Satellite Glial Cells using [K]o: Role of Kir4.1 Channels and Extracellular Leakage." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography