Journal articles on the topic 'Kir3.2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Kir3.2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pondugula, Satyanarayana R., Nithya N. Raveendran, Zuhal Ergonul, et al. "Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat." Physiological Genomics 24, no. 2 (2006): 114–23. http://dx.doi.org/10.1152/physiolgenomics.00006.2005.
Full textBradley, Karri K., William J. Hatton, Helen S. Mason, et al. "Kir3.1/3.2 encodes an I KACh-like current in gastrointestinal myocytes." American Journal of Physiology-Gastrointestinal and Liver Physiology 278, no. 2 (2000): G289—G296. http://dx.doi.org/10.1152/ajpgi.2000.278.2.g289.
Full textBrochiero, Emmanuelle, Bernadette Wallendorf, Dominique Gagnon, Raynald Laprade, and Jean-Yves Lapointe. "Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal KATP channel." American Journal of Physiology-Renal Physiology 282, no. 2 (2002): F289—F300. http://dx.doi.org/10.1152/ajprenal.00063.2001.
Full textFang, Yun, Gernot Schram, Victor G. Romanenko, et al. "Functional expression of Kir2.x in human aortic endothelial cells: the dominant role of Kir2.2." American Journal of Physiology-Cell Physiology 289, no. 5 (2005): C1134—C1144. http://dx.doi.org/10.1152/ajpcell.00077.2005.
Full textKonstas, Angelos-Aristeidis, Christoph Korbmacher, and Stephen J. Tucker. "Identification of domains that control the heteromeric assembly of Kir5.1/Kir4.0 potassium channels." American Journal of Physiology-Cell Physiology 284, no. 4 (2003): C910—C917. http://dx.doi.org/10.1152/ajpcell.00479.2002.
Full textYuan, Dou, Ping Zheng, Chen Tan, Si Hui Huang, Dan Li, and Jian Huang. "Influence of Continuous Training on Atrial Myocytes IK1 and IKAch and on Induction of Atrial Fibrillation in a Rabbit Model." Cardiology Research and Practice 2018 (December 19, 2018): 1–10. http://dx.doi.org/10.1155/2018/3795608.
Full textRichard-Lalonde, Melissa, Karim Nagi, Nicolas Audet та ін. "Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via δ-Opioid Receptors". Molecular Pharmacology 83, № 2 (2012): 416–28. http://dx.doi.org/10.1124/mol.112.081950.
Full textLeonoudakis, D., W. Mailliard, K. Wingerd, D. Clegg, and C. Vandenberg. "Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97." Journal of Cell Science 114, no. 5 (2001): 987–98. http://dx.doi.org/10.1242/jcs.114.5.987.
Full textSzuts, Viktoria, Dalma Ménesi, Zoltán Varga-Orvos, et al. "Altered expression of genes for Kir ion channels in dilated cardiomyopathy." Canadian Journal of Physiology and Pharmacology 91, no. 8 (2013): 648–56. http://dx.doi.org/10.1139/cjpp-2012-0413.
Full textMasia, Ricard, Daniela S. Krause, and Gary Yellen. "The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver." American Journal of Physiology-Cell Physiology 308, no. 3 (2015): C264—C276. http://dx.doi.org/10.1152/ajpcell.00176.2014.
Full textHuang, Chunfa, Aleksandra Sindic, Ceredwyn E. Hill, et al. "Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function." American Journal of Physiology-Renal Physiology 292, no. 3 (2007): F1073—F1081. http://dx.doi.org/10.1152/ajprenal.00269.2006.
Full textPanama, Brian K., Meredith McLerie, and Anatoli N. Lopatin. "Heterogeneity of IK1 in the mouse heart." American Journal of Physiology-Heart and Circulatory Physiology 293, no. 6 (2007): H3558—H3567. http://dx.doi.org/10.1152/ajpheart.00419.2007.
Full textBrasko, Csilla, and Arthur Butt. "Expression of Kir2.1 Inward Rectifying Potassium Channels in Optic Nerve Glia: Evidence for Heteromeric Association with Kir4.1 and Kir5.1." Neuroglia 1, no. 1 (2018): 176–87. http://dx.doi.org/10.3390/neuroglia1010012.
Full textKamikawa, Akihiro, and Toru Ishikawa. "Functional expression of a Kir2.1-like inwardly rectifying potassium channel in mouse mammary secretory cells." American Journal of Physiology-Cell Physiology 306, no. 3 (2014): C230—C240. http://dx.doi.org/10.1152/ajpcell.00219.2013.
Full textWeaver, C. David, and Jerod S. Denton. "Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology." American Journal of Physiology-Cell Physiology 320, no. 6 (2021): C1125—C1140. http://dx.doi.org/10.1152/ajpcell.00548.2020.
Full textZhang, Changliang, Takashi Miki, Tadao Shibasaki, Masaaki Yokokura, Atsunori Saraya, and Susumu Seino. "Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish." Physiological Genomics 24, no. 3 (2006): 290–97. http://dx.doi.org/10.1152/physiolgenomics.00228.2005.
Full textLignon, Jacques M., Zoë Bichler, Bruno Hivert, et al. "Altered heart rate control in transgenic mice carrying the KCNJ6 gene of the human chromosome 21." Physiological Genomics 33, no. 2 (2008): 230–39. http://dx.doi.org/10.1152/physiolgenomics.00143.2007.
Full textTang, Chengchun, Dong Wang, Erfei Luo, et al. "Activation of Inward Rectifier K+ Channel 2.1 by PDGF-BB in Rat Vascular Smooth Muscle Cells through Protein Kinase A." BioMed Research International 2020 (May 2, 2020): 1–9. http://dx.doi.org/10.1155/2020/4370832.
Full textAkyuz, Enes, Chiara Villa, Merve Beker та Birsen Elibol. "Unraveling the Role of Inwardly Rectifying Potassium Channels in the Hippocampus of an Aβ(1–42)-Infused Rat Model of Alzheimer’s Disease". Biomedicines 8, № 3 (2020): 58. http://dx.doi.org/10.3390/biomedicines8030058.
Full textQiao, Pei, Yang Liu, Tianqi Zhang, Amanda Benavides, and Arthur Laganowsky. "Insight into the Selectivity of Kir3.2 toward Phosphatidylinositides." Biochemistry 59, no. 22 (2020): 2089–99. http://dx.doi.org/10.1021/acs.biochem.0c00163.
Full textDobrzynski, Halina, David D. R. Marples, Hanny Musa, et al. "Distribution of the Muscarinic K+ Channel Proteins Kir3.1 and Kir3.4 in the Ventricle, Atrium, and Sinoatrial Node of Heart." Journal of Histochemistry & Cytochemistry 49, no. 10 (2001): 1221–34. http://dx.doi.org/10.1177/002215540104901004.
Full textPatel, Dharmeshkumar, Serdar Kuyucak, and Craig A. Doupnik. "Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels." Biochemistry 59, no. 7 (2020): 836–50. http://dx.doi.org/10.1021/acs.biochem.9b01098.
Full textDoupnik, Craig A., Dharmeshkumar Patel, and Serdar Kuyucak. "Validation of computational models for tertiapin-blocked neuronal Kir3.2 channels." Toxicon 159 (March 2019): S7. http://dx.doi.org/10.1016/j.toxicon.2018.11.336.
Full textStary-Weinzinger, Anna, and Harald Bernsteiner. "Conduction and Selectivity in Kir3.2 Channels - A Molecular Dynamics Study." Biophysical Journal 118, no. 3 (2020): 108a. http://dx.doi.org/10.1016/j.bpj.2019.11.741.
Full textTorrecilla, Maria, Cheryl L. Marker, Stephanie C. Cintora, Markus Stoffel, John T. Williams, and Kevin Wickman. "G-Protein-Gated Potassium Channels Containing Kir3.2 and Kir3.3 Subunits Mediate the Acute Inhibitory Effects of Opioids on Locus Ceruleus Neurons." Journal of Neuroscience 22, no. 11 (2002): 4328–34. http://dx.doi.org/10.1523/jneurosci.22-11-04328.2002.
Full textDelgado-Ramírez, Mayra, Fanny Junue Rodriguez-Leal, Aldo Azmar Rodríguez-Menchaca, Eloy Gerardo Moreno-Galindo, José Antonio Sanchez-Chapula, and Tania Ferrer. "Inhibitory effect of terfenadine on Kir2.1 and Kir2.3 channels." Acta Pharmaceutica 71, no. 2 (2020): 317–24. http://dx.doi.org/10.2478/acph-2021-0017.
Full textFriesacher, Theres, Harald Bernsteiner, and Anna Stary-Weinzinger. "Structural Changes in Kir3.2 Channels Leading to Loss of K+ Selectivity." Biophysical Journal 120, no. 3 (2021): 244a. http://dx.doi.org/10.1016/j.bpj.2020.11.1596.
Full textAdney, Scott K., Xuan-Yu Meng, and Diomedes E. Logothetis. "Unique PIP2 Sensitivity at a Putative PKC Site in GIRK2 (Kir3.2)." Biophysical Journal 104, no. 2 (2013): 130a. http://dx.doi.org/10.1016/j.bpj.2012.11.745.
Full textLi, Daxu, Rong Chen, and Shin-Ho Chung. "Molecular dynamics of the honey bee toxin tertiapin binding to Kir3.2." Biophysical Chemistry 219 (December 2016): 43–48. http://dx.doi.org/10.1016/j.bpc.2016.09.010.
Full textKawano, Takashi, Shuzo Oshita, Akira Takahashi, et al. "Molecular Mechanisms Underlying Ketamine-mediated Inhibition of Sarcolemmal Adenosine Triphosphate-sensitive Potassium Channels." Anesthesiology 102, no. 1 (2005): 93–101. http://dx.doi.org/10.1097/00000542-200501000-00017.
Full textMiki, T., K. Nagashima, and S. Seino. "The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells." Journal of Molecular Endocrinology 22, no. 2 (1999): 113–23. http://dx.doi.org/10.1677/jme.0.0220113.
Full textHassinen, Minna, Vesa Paajanen, Jaakko Haverinen, Heli Eronen, and Matti Vornanen. "Cloning and expression of cardiac Kir2.1 and Kir2.2 channels in thermally acclimated rainbow trout." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, no. 6 (2007): R2328—R2339. http://dx.doi.org/10.1152/ajpregu.00354.2006.
Full textYang, Hua-Qian, Wilnelly Martinez-Ortiz, JongIn Hwang, Xuexin Fan, Timothy J. Cardozo, and William A. Coetzee. "Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity." Proceedings of the National Academy of Sciences 117, no. 19 (2020): 10593–602. http://dx.doi.org/10.1073/pnas.1918088117.
Full textКожевникова, Л. М., and И. Ф. Суханова. "Aging has different effects on the functional activity and gene expression of classical inward-rectifying potassium channels Kir2.1 and Kir2.4 and ATP-sensitive KATP channels in blood vessels and heart of male rats." Zhurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia» 67, no. 2 (2023): 5–16. http://dx.doi.org/10.25557/0031-2991.2023.02.5-16.
Full textIshihara, Keiko, Tomomi Yamamoto, and Yoshihiro Kubo. "Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4." Biochemical and Biophysical Research Communications 380, no. 4 (2009): 832–37. http://dx.doi.org/10.1016/j.bbrc.2009.01.179.
Full textZhou, Ming, Osamu Tanaka, Masaki Sekiguchi, et al. "ATP-sensitive K+ -channel Subunits on the Mitochondria and Endoplasmic Reticulum of Rat Cardiomyocytes." Journal of Histochemistry & Cytochemistry 53, no. 12 (2005): 1491–500. http://dx.doi.org/10.1369/jhc.5a6736.2005.
Full textOwen, J. M., C. C. Quinn, R. Leach, J. B. C. Findlay, and M. R. Boyett. "Effect of Extracellular Cations on the Inward Rectifying K+ Channels Kir2.1 and Kir3.1/Kir3.4." Experimental Physiology 84, no. 3 (1999): 471–88. http://dx.doi.org/10.1111/j.1469-445x.1999.01806.x.
Full textBagriantsev, Sviatoslav N., Franck C. Chatelain, Kimberly A. Clark, Noga Alagem, Eitan Reuveny, and Daniel L. Minor. "Tethered Protein Display Identifies a Novel Kir3.2 (GIRK2) Regulator from Protein Scaffold Libraries." ACS Chemical Neuroscience 5, no. 9 (2014): 812–22. http://dx.doi.org/10.1021/cn5000698.
Full textHilder, Tamsyn A., and Shin-Ho Chung. "Conductance properties of the inwardly rectifying channel, Kir3.2: Molecular and Brownian dynamics study." Biochimica et Biophysica Acta (BBA) - Biomembranes 1828, no. 2 (2013): 471–78. http://dx.doi.org/10.1016/j.bbamem.2012.09.022.
Full textTaylor, Clinton A., Sung-Wan An, Sachith Gallolu Kankanamalage, et al. "OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant." Proceedings of the National Academy of Sciences 115, no. 15 (2018): 3840–45. http://dx.doi.org/10.1073/pnas.1802339115.
Full textNakamura, Tomoe Y., Michael Artman, Bernardo Rudy, and William A. Coetzee. "Inhibition of rat ventricularI K1 with antisense oligonucleotides targeted to Kir2.1 mRNA." American Journal of Physiology-Heart and Circulatory Physiology 274, no. 3 (1998): H892—H900. http://dx.doi.org/10.1152/ajpheart.1998.274.3.h892.
Full textWang, Ming-Xiao, Xiao-Tong Su, Peng Wu, et al. "Kir5.1 regulates Nedd4-2-mediated ubiquitination of Kir4.1 in distal nephron." American Journal of Physiology-Renal Physiology 315, no. 4 (2018): F986—F996. http://dx.doi.org/10.1152/ajprenal.00059.2018.
Full textIshii, Masaru, Akikazu Fujita, Kaori Iwai, et al. "Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina." American Journal of Physiology-Cell Physiology 285, no. 2 (2003): C260—C267. http://dx.doi.org/10.1152/ajpcell.00560.2002.
Full textTanemoto, Masayuki, Takaaki Abe, Tohru Onogawa, and Sadayoshi Ito. "PDZ binding motif-dependent localization of K+ channel on the basolateral side in distal tubules." American Journal of Physiology-Renal Physiology 287, no. 6 (2004): F1148—F1153. http://dx.doi.org/10.1152/ajprenal.00203.2004.
Full textHassinen, Minna, Hanna Korajoki, Denis Abramochkin, Pavel Krivosheya, and Matti Vornanen. "Transcript expression of inward rectifier potassium channels of Kir2 subfamily in Arctic marine and freshwater fish species." Journal of Comparative Physiology B 189, no. 6 (2019): 735–49. http://dx.doi.org/10.1007/s00360-019-01241-9.
Full textWalsh, Kenneth B. "Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators." SLAS DISCOVERY: Advancing the Science of Drug Discovery 25, no. 5 (2020): 420–33. http://dx.doi.org/10.1177/2472555220905558.
Full textKawano, Takashi, Shuzo Oshita, Akira Takahashi, et al. "Molecular Mechanisms of the Inhibitory Effects of Propofol and Thiamylal on Sarcolemmal Adenosine Triphosphate–sensitive Potassium Channels." Anesthesiology 100, no. 2 (2004): 338–46. http://dx.doi.org/10.1097/00000542-200402000-00024.
Full textMaqoud, Fatima, Rosa Scala, Vincenzo Tragni, et al. "Zoledronic Acid as a Novel Dual Blocker of KIR6.1/2-SUR2 Subunits of ATP-Sensitive K+ Channels: Role in the Adverse Drug Reactions." Pharmaceutics 13, no. 9 (2021): 1350. http://dx.doi.org/10.3390/pharmaceutics13091350.
Full textSeyler, C., P. Xynogalos, D. Scherer, et al. "P639Amiodarone and dronedarone inhibit inwardly rectifying Kir2.1 channels, but not Kir2.2 and Kir2.3 channels." Cardiovascular Research 103, suppl 1 (2014): S116.3—S116. http://dx.doi.org/10.1093/cvr/cvu098.66.
Full textWu, Peng, Zhong-Xiuzi Gao, Xiao-Tong Su, Ming-Xiao Wang, Wen-Hui Wang, and Dao-Hong Lin. "Kir4.1/Kir5.1 Activity Is Essential for Dietary Sodium Intake–Induced Modulation of Na-Cl Cotransporter." Journal of the American Society of Nephrology 30, no. 2 (2018): 216–27. http://dx.doi.org/10.1681/asn.2018080799.
Full text