Academic literature on the topic 'Knee segmentation in MRI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Knee segmentation in MRI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Knee segmentation in MRI"
Riza, Sulaiman, Djasmir Marlinawati, and Mohamad Amran Mohd Fahmi. "COMSeg technique for MRI knee cartilage segmentation." International Review of Applied Sciences and Engineering 10, no. 2 (December 2019): 147–55. http://dx.doi.org/10.1556/1848.2019.0018.
Full textOei, Edwin H. G., Tijmen A. van Zadelhoff, Susanne M. Eijgenraam, Stefan Klein, Jukka Hirvasniemi, and Rianne A. van der Heijden. "3D MRI in Osteoarthritis." Seminars in Musculoskeletal Radiology 25, no. 03 (June 2021): 468–79. http://dx.doi.org/10.1055/s-0041-1730911.
Full textMore, Sujeet, Jimmy Singla, Ahed Abugabah, and Ahmad Ali AlZubi. "Machine Learning Techniques for Quantification of Knee Segmentation from MRI." Complexity 2020 (December 7, 2020): 1–13. http://dx.doi.org/10.1155/2020/6613191.
Full textBarendregt, Anouk M., Valentina Mazzoli, J. Merlijn van den Berg, Taco W. Kuijpers, Mario Maas, Aart J. Nederveen, and Robert Hemke. "T1ρ-mapping for assessing knee joint cartilage in children with juvenile idiopathic arthritis — feasibility and repeatability." Pediatric Radiology 50, no. 3 (November 9, 2019): 371–79. http://dx.doi.org/10.1007/s00247-019-04557-4.
Full textZhang, Ying, Mo Ruan, Hongbo Tan, Ming Chen, and Yongqing Xu. "Analysis of the Effect of Intra-Articular Injection of Platelet-Rich Plasma on Knee Arthritis Pain Based on MRI Image Segmentation Algorithm." Journal of Medical Imaging and Health Informatics 11, no. 1 (January 1, 2021): 192–96. http://dx.doi.org/10.1166/jmihi.2021.3441.
Full textKashyap, S., H. Zhang, and M. Sonka. "Accurate Fully Automated 4D Segmentation of Osteoarthritic Knee MRI." Osteoarthritis and Cartilage 25 (April 2017): S227—S228. http://dx.doi.org/10.1016/j.joca.2017.02.391.
Full textSaygili, Ahmet, and Songül Albayrak. "Knee Meniscus Segmentation and Tear Detection from MRI: A Review." Current Medical Imaging Formerly Current Medical Imaging Reviews 16, no. 1 (January 6, 2020): 2–15. http://dx.doi.org/10.2174/1573405614666181017122109.
Full textKumar, Deepak, and Jitendra Bhaskar. "A Review on Modelling of Knee Joint Using Medical Imaging Methods." INTERNATIONAL JOURNAL OF ADVANCED PRODUCTION AND INDUSTRIAL ENGINEERING 5, no. 4 (October 5, 2020): 84–89. http://dx.doi.org/10.35121/ijapie202001146.
Full textDam, E. B., and J. Marques. "422 AUTOMATIC SEGMENTATION OF BONE AND CARTILAGE FROM KNEE MRI." Osteoarthritis and Cartilage 19 (September 2011): S196. http://dx.doi.org/10.1016/s1063-4584(11)60449-4.
Full textAprovitola, Andrea, and Luigi Gallo. "Knee bone segmentation from MRI: A classification and literature review." Biocybernetics and Biomedical Engineering 36, no. 2 (2016): 437–49. http://dx.doi.org/10.1016/j.bbe.2015.12.007.
Full textDissertations / Theses on the topic "Knee segmentation in MRI"
Lind, Marcus. "Automatic Segmentation of Knee Cartilage Using Quantitative MRI Data." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138403.
Full textKashyap, Satyananda. "Quantitative analysis and segmentation of knee MRI using layered optimal graph segmentation of multiple objects and surfaces." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2228.
Full textDib, Zoheir. "Chirurgie orthopédique assistée par ordinateur : application au traitement de l'arthrose du genou." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0070/document.
Full textOsteoarthritis is a real public health problem. More than ten million people are affected by osteoarthritis in France and 35 million in the United States. Knee Osteoarthritis represents 35% of the total number of osteoarthritis with more than 1.3 million patients in Europe. Today, there are several solutions to treat knee osteoarthritis depending on the degenerative nature of the disease : from conservative surgical treatment, such as High tibia Osteotomy (HTO), to prosthetic surgical treatment, such as Total Knee arthroplasty (TKA). The long-term success of these interventions is (1) the control of the lower limb alignment, during the intervention, which can be obtained by measuring the HKA angle between the hip, the knee and the ankle centers, and (2) the surgical planning allowing the preparation of the intervention, and for instance, the definition of the optimal cuts for the placement of a knee prosthesis based on the 3D model of the patient bone obtained from computerized tomography (CT) or MRI. We were interested, first, in the study and evaluation, in a clinical context, of the accuracy and precision of the methods used in computer-assisted orthopedic surgery for the localization of the hip center. We have thus proposed a new minimally invasive method especially adapted to HTO. We were interested, then, to the segmentation methods allowing the extraction of the knee bony surface from MRI for the surgical planning. We have also proposed a new automatic approach based on active shape models (ASM). Given the very encouraging results, the integration of our contributions in the clinical routine could, potentially, improve the medical benefits for the treatment of knee osteoarthritis
Morra, Jonathan Harold. "Learning methods for brain MRI segmentation." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905693471&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textKrishnan, Nitya. "Multispectral segmentation of whole brain MRI." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3753.
Full textTitle from document title page. Document formatted into pages; contains vii, 89 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-59).
Ezzadeen, Hani. "Extraction and segmentation of MRI brain images." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97949.
Full textIn this thesis, we explain the research we have implemented to extract the brain from T1-weighted MRI images, and then segment the brain into the three prominent compartments (i.e. the cerebellum and the two hemispheres of the cerebrum). The brain extraction is implemented using morphological operations after thresholding. The brain segmentation, however, is implemented in two separate steps. The first step segments the two hemispheres by approximating the midsagittal surface using mainly Radon transform. The second step segments the cerebellum using an atlas-based contour as an initial contour for the gradient vector flow active contour algorithm.
Validation tests have been performed for the brain extraction and cerebellum segmentation methods.
Cederberg, Erik. "Adipose tissue segmentation in whole-body MRI." Thesis, Linköping University, Linköping University, Medical Informatics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57465.
Full textDreijer, Janto Frederick. "Cardiac MRI segmentation with conditional random fields." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85847.
Full textENGLISH ABSTRACT: This dissertation considers automatic segmentation of the left cardiac ventricle in short axis magnetic resonance images. The presence of papillary muscles near the endocardium border makes simple threshold based segmentation difficult. The endo- and epicardium are modelled as two series of radii which are inter-related using features describing shape and motion. Image features are derived from edge information from human annotated images. The features are combined within a Conditional Random Field (CRF) – a discriminatively trained probabilistic model. Loopy belief propagation is used to infer segmentations when an unsegmented video sequence is given. Powell’s method is applied to find CRF parameters by minimising the difference between ground truth annotations and the inferred contours. We also describe how the endocardium centre points are calculated from a single human-provided centre point in the first frame, through minimisation of frame alignment error. We present and analyse the results of segmentation. The algorithm exhibits robustness against inclusion of the papillary muscles by integrating shape and motion information. Possible future improvements are identified.
AFRIKAANSE OPSOMMING: Hierdie proefskrif bespreek die outomatiese segmentasie van die linkerhartkamer in kortas snit magnetiese resonansie beelde. Die teenwoordigheid van die papillêre spiere naby die endokardium grens maak eenvoudige drumpel gebaseerde segmentering moeilik. Die endo- en epikardium word gemodelleer as twee reekse van die radiusse wat beperk word deur eienskappe wat vorm en beweging beskryf. Beeld eienskappe word afgelei van die rand inligting van mens-geannoteerde beelde. Die funksies word gekombineer binne ’n CRF (Conditional Random Field) – ’n diskriminatief afgerigte waarskynlikheidsverdeling. “Loopy belief propagation” word gebruik om segmentasies af te lei wanneer ’n ongesegmenteerde video verskaf word. Powell se metode word toegepas om CRF parameters te vind deur die minimering van die verskil tussen mens geannoteerde segmentasies en die afgeleide kontoere. Ons beskryf ook hoe die endokardium se middelpunte bereken word vanaf ’n enkele mens-verskafte middelpunt in die eerste raam, deur die minimering van ’n raambelyningsfout. Ons analiseer die resultate van segmentering. Die algoritme vertoon robuustheid teen die insluiting van die papillêre spiere deur die integrasie van inligting oor die vorm en die beweging. Moontlike toekomstige verbeterings word geïdentifiseer.
Murgasova, Maria. "Segmentation of brain MRI during early childhood." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/4354.
Full textDonoghue, Claire. "Analysis of MRI for knee osteoarthritis using machine learning." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24684.
Full textBooks on the topic "Knee segmentation in MRI"
Bolog, Nicolae V., Gustav Andreisek, and Erika J. Ulbrich. MRI of the Knee. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08165-6.
Full textAdvances in MRI of the knee for osteoarthritis. New Jersey: World Scientific, 2010.
Find full textname, No. MRI atlas of orthopedics and traumatology of the knee. Berlin: Springer, 2003.
Find full textTeller, Peter, Hermann König, Ulrich Weber, and Peter Hertel. MRI Atlas of Orthopedics and Traumatology of the Knee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55620-3.
Full textF, Nielsen Poul M., Miller Karol, and SpringerLink (Online service), eds. Computational Biomechanics for Medicine: Soft Tissues and the Musculoskeletal System. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textL, Munk Peter, and Helms Clyde A, eds. MRI of the knee. 2nd ed. Philadelphia: Lippincott-Raven, 1996.
Find full textLee, Christoph I. Incidental Meniscal Findings on Knee MRI. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190223700.003.0033.
Full textFenstermacher, Marc. MRI of the Knee CD-ROM (Body MRI Series on CD-ROM). A Hodder Arnold Publication, 1997.
Find full textBook chapters on the topic "Knee segmentation in MRI"
Thengade, Anita, and A. M. Rajurkar. "Segmentation of Knee Bone Using MRI." In Applied Computer Vision and Image Processing, 237–46. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4029-5_24.
Full textWang, Zehan, Claire Donoghue, and Daniel Rueckert. "Patch-Based Segmentation without Registration: Application to Knee MRI." In Machine Learning in Medical Imaging, 98–105. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02267-3_13.
Full textFolkesson, Jenny, Ole Fogh Olsen, Paola Pettersen, Erik Dam, and Claus Christiansen. "Combining Binary Classifiers for Automatic Cartilage Segmentation in Knee MRI." In Computer Vision for Biomedical Image Applications, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11569541_24.
Full textLorigo, Liana M., Olivier Faugeras, W. E. L. Grimson, Renaud Keriven, and Ron Kikinis. "Segmentation of bone in clinical knee MRI using texture-based geodesic active contours." In Medical Image Computing and Computer-Assisted Intervention — MICCAI’98, 1195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0056309.
Full textFolkesson, Jenny, Erik Dam, Ole Fogh Olsen, Paola Pettersen, and Claus Christiansen. "Automatic Segmentation of the Articular Cartilage in Knee MRI Using a Hierarchical Multi-class Classification Scheme." In Lecture Notes in Computer Science, 327–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11566465_41.
Full textM. S., Mallikarjunaswamy, Mallikarjun S. Holi, Rajesh Raman, and J. S. Sujana Theja. "Accurate Techniques of Thickness and Volume Measurement of Cartilage from Knee Joint MRI Using Semiautomatic Segmentation Methods." In New Trends in Computational Vision and Bio-inspired Computing, 1017–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41862-5_103.
Full textKashyap, Satyananda, Ipek Oguz, Honghai Zhang, and Milan Sonka. "Automated Segmentation of Knee MRI Using Hierarchical Classifiers and Just Enough Interaction Based Learning: Data from Osteoarthritis Initiative." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, 344–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46723-8_40.
Full textHegazi, Tarek M., and Jim S. Wu. "Knee." In Musculoskeletal MRI, 109–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26777-3_5.
Full textMohiaddin, Raad H., and Donald B. Longmore. "Knee." In MRI Atlas of Normal Anatomy, 155–81. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2990-9_9.
Full textPereira, Hélder, Sérgio Gomes, José Carlos Vasconcelos, Laura Soares, Rogério Pereira, Joaquim Miguel Oliveira, Rui L. Reis, and Joao Espregueira-Mendes. "MRI Laxity Assessment." In Rotatory Knee Instability, 49–61. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32070-0_5.
Full textConference papers on the topic "Knee segmentation in MRI"
Almajalid, Rania, Juan Shan, Maolin Zhang, Garrett Stonis, and Ming Zhang. "Knee Bone Segmentation on Three-Dimensional MRI." In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00280.
Full textS.A., Revathi, and Ganga Holi. "Cartilage Segmentation of Knee OsteoArthritis From Magnetic Resonance Images(MRI)." In 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC). IEEE, 2018. http://dx.doi.org/10.1109/icaecc.2018.8479529.
Full textLim, Mikhiel, and Ilker Hacihaliloglu. "Segmentation of knee MRI using structure enhanced local phase filtering." In SPIE Medical Imaging, edited by Georgia D. Tourassi and Samuel G. Armato. SPIE, 2016. http://dx.doi.org/10.1117/12.2216568.
Full textDai, Wei, Boyeong Woo, Siyu Liu, Matthew Marques, Fangfang Tang, Stuart Crozier, Craig Engstrom, and Shekhar Chandra. "Can3d: Fast 3d Knee Mri Segmentation Via Compact Context Aggregation." In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9433784.
Full textZhou, L., R. Chav, T. Cresson, G. Chartrand, and J. de Guise. "3D knee segmentation based on three MRI sequences from different planes." In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7590881.
Full textPrasoon, Adhish, Christian Igel, Marco Loog, Francois Lauze, Erik B. Dam, and Mads Nielsen. "Femoral cartilage segmentation in Knee MRI scans using two stage voxel classification." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610787.
Full textPanfilov, Egor, Aleksei Tiulpin, Stefan Klein, Miika T. Nieminen, and Simo Saarakkala. "Improving Robustness of Deep Learning Based Knee MRI Segmentation: Mixup and Adversarial Domain Adaptation." In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, 2019. http://dx.doi.org/10.1109/iccvw.2019.00057.
Full textLee, Hansang, Helen Hong, and Junmo Kim. "BCD-NET: A novel method for cartilage segmentation of knee MRI via deep segmentation networks with bone-cartilage-complex modeling." In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018. http://dx.doi.org/10.1109/isbi.2018.8363866.
Full textWilliams, Tomos G., Graham Vincent, Mike Bowes, Tim Cootes, Sharon Balamoody, Charles Hutchinson, John C. Waterton, and Chris J. Taylor. "Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI." In 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2010. http://dx.doi.org/10.1109/isbi.2010.5490316.
Full textLynch, John A., Souhil Zaim, Jenny Zhao, Alexander Stork, Charles G. Peterfy, and Harry K. Genant. "Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours." In Medical Imaging 2000, edited by Kenneth M. Hanson. SPIE, 2000. http://dx.doi.org/10.1117/12.387758.
Full textReports on the topic "Knee segmentation in MRI"
Anantharajan, Shenbagarajan, Shenbagalakshmi Gunasekaran, and Elamparithi Pandian. MRI Brain Tumour Segmentation Based on Fish Chaining Transition Optimization Algorithm. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2020. http://dx.doi.org/10.7546/crabs.2020.02.14.
Full text