Dissertations / Theses on the topic 'Knee segmentation in MRI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Knee segmentation in MRI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lind, Marcus. "Automatic Segmentation of Knee Cartilage Using Quantitative MRI Data." Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138403.
Full textKashyap, Satyananda. "Quantitative analysis and segmentation of knee MRI using layered optimal graph segmentation of multiple objects and surfaces." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2228.
Full textDib, Zoheir. "Chirurgie orthopédique assistée par ordinateur : application au traitement de l'arthrose du genou." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0070/document.
Full textOsteoarthritis is a real public health problem. More than ten million people are affected by osteoarthritis in France and 35 million in the United States. Knee Osteoarthritis represents 35% of the total number of osteoarthritis with more than 1.3 million patients in Europe. Today, there are several solutions to treat knee osteoarthritis depending on the degenerative nature of the disease : from conservative surgical treatment, such as High tibia Osteotomy (HTO), to prosthetic surgical treatment, such as Total Knee arthroplasty (TKA). The long-term success of these interventions is (1) the control of the lower limb alignment, during the intervention, which can be obtained by measuring the HKA angle between the hip, the knee and the ankle centers, and (2) the surgical planning allowing the preparation of the intervention, and for instance, the definition of the optimal cuts for the placement of a knee prosthesis based on the 3D model of the patient bone obtained from computerized tomography (CT) or MRI. We were interested, first, in the study and evaluation, in a clinical context, of the accuracy and precision of the methods used in computer-assisted orthopedic surgery for the localization of the hip center. We have thus proposed a new minimally invasive method especially adapted to HTO. We were interested, then, to the segmentation methods allowing the extraction of the knee bony surface from MRI for the surgical planning. We have also proposed a new automatic approach based on active shape models (ASM). Given the very encouraging results, the integration of our contributions in the clinical routine could, potentially, improve the medical benefits for the treatment of knee osteoarthritis
Morra, Jonathan Harold. "Learning methods for brain MRI segmentation." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905693471&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textKrishnan, Nitya. "Multispectral segmentation of whole brain MRI." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3753.
Full textTitle from document title page. Document formatted into pages; contains vii, 89 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-59).
Ezzadeen, Hani. "Extraction and segmentation of MRI brain images." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97949.
Full textIn this thesis, we explain the research we have implemented to extract the brain from T1-weighted MRI images, and then segment the brain into the three prominent compartments (i.e. the cerebellum and the two hemispheres of the cerebrum). The brain extraction is implemented using morphological operations after thresholding. The brain segmentation, however, is implemented in two separate steps. The first step segments the two hemispheres by approximating the midsagittal surface using mainly Radon transform. The second step segments the cerebellum using an atlas-based contour as an initial contour for the gradient vector flow active contour algorithm.
Validation tests have been performed for the brain extraction and cerebellum segmentation methods.
Cederberg, Erik. "Adipose tissue segmentation in whole-body MRI." Thesis, Linköping University, Linköping University, Medical Informatics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57465.
Full textDreijer, Janto Frederick. "Cardiac MRI segmentation with conditional random fields." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85847.
Full textENGLISH ABSTRACT: This dissertation considers automatic segmentation of the left cardiac ventricle in short axis magnetic resonance images. The presence of papillary muscles near the endocardium border makes simple threshold based segmentation difficult. The endo- and epicardium are modelled as two series of radii which are inter-related using features describing shape and motion. Image features are derived from edge information from human annotated images. The features are combined within a Conditional Random Field (CRF) – a discriminatively trained probabilistic model. Loopy belief propagation is used to infer segmentations when an unsegmented video sequence is given. Powell’s method is applied to find CRF parameters by minimising the difference between ground truth annotations and the inferred contours. We also describe how the endocardium centre points are calculated from a single human-provided centre point in the first frame, through minimisation of frame alignment error. We present and analyse the results of segmentation. The algorithm exhibits robustness against inclusion of the papillary muscles by integrating shape and motion information. Possible future improvements are identified.
AFRIKAANSE OPSOMMING: Hierdie proefskrif bespreek die outomatiese segmentasie van die linkerhartkamer in kortas snit magnetiese resonansie beelde. Die teenwoordigheid van die papillêre spiere naby die endokardium grens maak eenvoudige drumpel gebaseerde segmentering moeilik. Die endo- en epikardium word gemodelleer as twee reekse van die radiusse wat beperk word deur eienskappe wat vorm en beweging beskryf. Beeld eienskappe word afgelei van die rand inligting van mens-geannoteerde beelde. Die funksies word gekombineer binne ’n CRF (Conditional Random Field) – ’n diskriminatief afgerigte waarskynlikheidsverdeling. “Loopy belief propagation” word gebruik om segmentasies af te lei wanneer ’n ongesegmenteerde video verskaf word. Powell se metode word toegepas om CRF parameters te vind deur die minimering van die verskil tussen mens geannoteerde segmentasies en die afgeleide kontoere. Ons beskryf ook hoe die endokardium se middelpunte bereken word vanaf ’n enkele mens-verskafte middelpunt in die eerste raam, deur die minimering van ’n raambelyningsfout. Ons analiseer die resultate van segmentering. Die algoritme vertoon robuustheid teen die insluiting van die papillêre spiere deur die integrasie van inligting oor die vorm en die beweging. Moontlike toekomstige verbeterings word geïdentifiseer.
Murgasova, Maria. "Segmentation of brain MRI during early childhood." Thesis, Imperial College London, 2008. http://hdl.handle.net/10044/1/4354.
Full textDonoghue, Claire. "Analysis of MRI for knee osteoarthritis using machine learning." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24684.
Full textAbdullah, Bassem A. "Segmentation of Multiple Sclerosis Lesions in Brain MRI." Scholarly Repository, 2012. http://scholarlyrepository.miami.edu/oa_dissertations/711.
Full textMcGraw, Tim E. "Denoising, segmentation and visualization of diffusion weighted MRI." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011618.
Full textKai, Li. "Neuroanatomical segmentation in MRI exploiting a priori knowledge /." view abstract or download file of text, 2007. http://proquest.umi.com/pqdweb?did=1400964181&sid=1&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 148-158). Also available for download via the World Wide Web; free to University of Oregon users.
Zhu, Yanong. "Automatic prostate segmentation and cancer staging using MRI." Thesis, University of East Anglia, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426684.
Full textLiu, Warren Hsiao-T. "Segmentation of Subcortical Structures from Nonhuman Primate MRI." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/34737.
Full textMaster of Science
Ibrahim, Haidi. "Segmentation of the liver from 3D MRI data." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/842968/.
Full textStacke, Karin. "Automatic Brain Segmentation into Substructures Using Quantitative MRI." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128900.
Full textMahbod, Amirreza. "Structural Brain MRI Segmentation Using Machine Learning Technique." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189985.
Full textMakropoulos, Antonios. "Automatic MRI segmentation of the developing neonatal brain." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/23953.
Full textAl-Riyami, Masoud. "Traumatic Chondral Lesions of the Knee in Athletes with Emphasis on Arthroscopy, MRI, and Knee Function." Thesis, University of Sheffield, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486789.
Full textRezaeitabar, Yousef. "Facial Soft Tissue Segmentation In Mri Using Unlabeled Atlas." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613546/index.pdf.
Full textMarkov random field (EM-MRF) based methods are tested for two dimensional (2D) segmentation of masseter muscle in the face. Atlas based method uses the manually labeled atlases as prior information. We implemented EM-MRF based method in different manners
without prior information, with prior information for initialization and with using labeled atlas as prior information. The differences between these methods and the influence of the prior information are discussed by comparing the results. Finally a new method based on EM-MRF is proposed in this study. In this method we aim to use prior information without performing manual segmentation, which is a very complicated and time consuming task. 10 MRI sets are used as experimental data in this study and leave-one-out technique is used to perform segmentation for all sets. The test data is modeled as a Markov Random Field where unlabeled training data, i.e., other 9 sets, are used as prior information. The model parameters are estimated by the Maximum Likelihood approach when the Expectation Maximization iterations are used to handle hidden labels. The performance of all segmentation methods are computed and compared to the manual segmented ground truth. Then we used the new 2D segmentation method for three dimensional (3D) segmentation of two masseter and two temporalis tissues in each data set and visualize the segmented tissue volumes.
Prastawa, Marcelinus Gerig Guido. "An MRI segmentation framework for brains with anatomical deviations." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,768.
Full textTitle from electronic title page (viewed Dec. 18, 2007). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science." Discipline: Computer Science; Department/School: Computer Science.
Sångberg, Dennis. "Automated Glioma Segmentation in MRI using Deep Convolutional Networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171046.
Full textManuell segmentering av hjärntumörer är en tidskrävande process, segmenteringarna är ofta varierade mellan experter, och automatisk segmentering skulle vara användbart för kliniskt bruk. Den här rapporten undersöker användningen av deep convolutional networks (ConvNets) för automatisk segmentering av gliom i MR-bilder. De implementerade nätverken utvärderas med hjälp av data från brain tumor segmentation challenge (BraTS). Studien finner att 3D-nätverk har generellt bättre resultat än 2D-nätverk, och att de bästa nätverken har förmågan att ge segmenteringar som liknar mänskliga segmenteringar. ConvNets utvärderas också som feature extractors, med linjära SVM som klassificerare. Den här metoden ger segmenteringar med hög känslighet, men är också till hög grad översegmenterade. Vikten av att ha mer träningsdata undersöks också genom att träna på två olika stora dataset, men metoden för att få fram de riktiga segmenteringarna har troligen också stor påverkan på resultatet. Nätverken slår inte de tidigare rekorden på BraTS, men flera viktiga men enkla förbättringsområden är identifierade som potentiellt skulle förbättra resultaten.
Alshuft, Hamza. "MRI-based brain morphometry correlates of chronic pain in knee osteoarthritis." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29746/.
Full textKobold, Jonathan. "Deep Learning for lesion and thrombus segmentation from cerebral MRI." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLE044.
Full textDeep learning, the world's best set of methods for identifying ob-jects on images. Stroke, a deadly disease whose treatment requiresidentifying objects on medical imaging. Sounds like an obvious com-bination yet it is not trivial to marry the two. Segmenting the lesionfrom stroke MRI has had some attention in literature but thrombussegmentation is still uncharted area. This work shows that contem-porary convolutional neural network architectures cannot reliablyidentify the thrombus on stroke MRI. Also it is demonstrated whythese models don't work on this problem. With this knowledge arecurrent neural network architecture, the logic LSTM, is developedthat takes into account the way medical doctors identify the throm-bus. Not only this architecture provides the first reliable thrombusidentification, it also provides new insights to neural network design.Especially the methods for increasing the receptive field are enrichedwith a new parameter free option. And last but not least the logicLSTM also improves the results of lesion segmentation by providinga lesion segmentation with human level performance
Auger, Daniel A. "3D cine DENSE MRI: ventricular segmentation and myocardial stratin analysis." Doctoral thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/3218.
Full textMackenzie, Roderick. "Assessment of the clinical value of magnetic resonance imaging of the knee." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/251824.
Full textJohal, Parminder Singh. "Tibiofemoral movement : an in vivo study of knee kinematics using 'interventional' MRI." Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440541.
Full textBasalamah, Saleh Mohammed. "Model based magnetic resonance image segmentation with application to the knee." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424450.
Full textKim, Max. "Improving Knee Cartilage Segmentation using Deep Learning-based Super-Resolution Methods." Thesis, KTH, Medicinteknik och hälsosystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297900.
Full textSegmentering av knäbrosket är ett viktigt steg för planering inför operationer och tillverkning av patientspecifika proteser. Idag segmenterar man knäbrosk med hjälp av MR-bilder tagna med en 3D-sekvens som både tidskrävande och rörelsekänsligt, vilket kan vara obehagligt för patienten. I samband med 3D-bildtagningar brukar även thick slice 2D-sekvenser tas för diagnostiska skäl, däremot är de inte anpassade för segmentering på grund av för tjocka skivor. På senare tid har djupinlärningsbaserade superupplösningsmetoder uppbyggda av så kallade feed-forwardmodeller visat sig vara väldigt framgångsrikt när det applicerats på verkliga- och medicinska bilder. Syftet med den här rapporten är att testa hur väl superupplösta thick slice 2D-sekvensbildtagningar fungerar för segmentering av ledbrosket i knät. De undersökta tillvägagångssätten är superupplösning av enkel- och flerkontrastbilder, där kontrasten är antingen baserade på 2D-sekvensen, 3D-sekvensen eller både och. Resultaten påvisar en liten förbättring av segmenteringnoggrannhet vid segmentering av enkelkontrastbilderna över baslinjen linjär interpolering. Däremot var det inte någon märkvärdig förbättring i superupplösning av flerkontrastbilderna. Även om superupplösning av flerkontrastmetoden inte gav någon märkbar förbättring segmenteringsresultaten så finns det fortfarande outforskade områden som inte tagits upp i det här arbetet som potentiellt skulle kunna utforskas i framtida arbeten.
Zhang, Nan. "Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701545.
Full textJohansson, Adam. "Evaluation of Bone Contrast Enhanced MRI Sequences and Voxel Based Segmentation." Thesis, Umeå universitet, Radiofysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-37560.
Full textEn sekevens för bildgivande magnetresonans (MRI) med ultrakort ekotid (UTE) användes tillsammans med andra MRI-sekvenser till att utvärdera möjligheten att segmentera luft, mjukvävnad och ben. Bilder togs av tre patienter med UTE-sekvensen och med övriga sekvenser samt med datortomografi (CT). En algoritm baserad på en blanding av normalfördelningar utvecklades och tillämpades på MR-segmenteringsproblemet.En likande algoritm utvecklades och användes till att skapa en konstgjord CT-bild utifrån MR-bilderna.Bilderna tagna av den första patienten användes till att träna algoritmerna medan bilderna av de två andra patienterna användes för validering. Mindre än 20 procent av volymen inuti huvudet felklassificerades och det kvadratiska medelvärdet av avvikelserna i den konstgjorda CT-bilden var mindre än 420 hounsfieldenheter. Slutligen togs bilder av en frivillig på samma sätt men med ytterligare en UTE-sekvens med en större flippvinkel. Resultatet antyder att den nya bilden kan bidra till en förbättrad segmentering.
Hansson, Olof. "Interactive segmentation of abdominal organs from 3D CT and MRI images." Thesis, Linköpings universitet, Institutionen för teknik och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93510.
Full textBatista, Neto Joao Do Espirito Santo. "Techniques for computer-based anatomical segmentation of the brain using MRI." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244197.
Full textKulaga-Yoskovitz, Jessie. "Hippocampal subfield segmentation on sub-millimetric MRI in temporal lobe epilepsy." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119544.
Full textIntroduction. L'épilepsie du lobe temporal (ELT) est la forme d'épilepsie pharmacorésistante la plus répandue dans la population adulte. La sclérose de l'hippocampe, la lésion épileptogène de l'ELT, est caractérisée par la perte de neurones et la gliose. L'hippocampe est composé des sous-structures qui sont cytoarchitectoniquement distinctes et sont affectées différemment par l'ELT. En effet, la perte de neurones est observée principalement dans la sous-structure CA1 et moins dans le subiculum, la CA3, la CA4 et le gyrus denté (GD). Objectif. Notre objectif était de développer un protocole pour la segmentation manuelle des sous-structures sur les images IRM sous-millimétriques. Nous avons appliqué ce protocole aux patients ayant l'ELT ainsi qu'à un groupe témoin sains pour évaluer les différences entre les groupes et les différences individuelles des volumes des sous-structures. Methodes. Nous avons obtenu des images pondérées en T1 (0.6 x 0.6 x 0.6 mm3) et en T2 (0.4 x 0.4 x 2 mm3) pour 30 patients consécutifs ayant l'ETL pharmacorésistante et pour 25 témoins sur un scanner 3T avec 32 antennes en réseau phasé. Les images ont été recalées dans l'espace stéréotaxique pour éliminer les différences de volume et d'orientation du cerveau. Les images pondérées en T1 et en T2 ont ensuite été co-recalées et ré-échantillonnées en voxels isotropes de 0.4 mm. L'hippocampe a été divisé en subiculum, CA1-3 et CA4-gyrus denté. Resultats. En comparaison avec le groupe témoin (seuil de 2 écarts-types), nous avons trouvé une atrophie ipsilaterale chez 14 patients sur 30 (47%). Sur ces 14 patients, 7 (50%) présentaient une atrophie des trois sous-structures, 4 (29%) de la CA1-3 et du subiculum, et 3 (21%) de la CA1-3 seulement. Dix des 30 (33%) patients ont montré une hypertrophie dans au moins une sous-structure. Parmi ces 10 patients, 4 ont montré des modifications ipsilateral, que ce soit dans le subiculum seul (1), ou combinées avec la CA1-3 (1), le CA4-GD (1) ou dans la CA1-CA3 et le CA4-GD (1). Pour les 6 autres patients, nous avons observé une hypertrophie bilatérale dans le subiculum (1), la CA1-3 (1), le CA4-GD (1), et à la fois dans le CA1-3 et le CA4-GD (1). Six patients présentaient des volumes de sous-structures équivalents à la distribution normale du groupe témoin. Conclusion. Dans notre cohorte de patients ayant l'ELT pharmacorésistante et l'atrophie de l'hippocampe unilatérale, l'atrophie du subiculum et des sous-structures de l'hippocampe, principalement le CA1-3, est survenue simultanément. D'autre part, l'IRM sous-millimétrique a révélé une hypertrophie des sous-régions pour 33% des patients, affectant principalement le CA4-GD. L'interaction entre la pathologie structurelle et le remodelage des circuits neuronaux peut favoriser une réponse astrogliotique avec une neurogenèse qui masque la perte de neurones, ce qui entraine une hypertrophie des tissus sur l'IRM.
Tejos, Cristián Andres. "Segmentation of articular cartilage from MRI using simplex mesh diffucsion snakes." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613688.
Full textEnlund, Åström Isabelle. "Attention P-Net for Segmentation of Post-operative Glioblastoma in MRI." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397009.
Full textHOU, YU. "APPLICATION OF A 3D LEVEL SET METHOD IN MRI SURFACE SEGMENTATION." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1132170846.
Full textAxberg, Elin, and Ida Klerstad. "Similarity models for atlas-based segmentation of whole-body MRI volumes." Thesis, Linköpings universitet, Institutionen för medicinsk teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-172792.
Full textKadir, Kushsairy Abdul. "Automatic edema segmentation and quantification from cardiac MRI with 3D visualization." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25810.
Full textAli, Syed Farooq. "Comparative Studies of Contouring Algorithms for Cardiac Image Segmentation." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1325183438.
Full textGarcía-Lorenzo, Daniel. "Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis." Phd thesis, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00485645.
Full textLi, Ting. "Contributions to Mean Shift filtering and segmentation : Application to MRI ischemic data." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00768315.
Full textDalca, Adrian Vasile. "Segmentation of nerve bundles and ganglia in spine MRI using particle filters." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75654.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 41-44).
Automatic segmentation of spinal nerve bundles originating within the dural sac and exiting the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this thesis, we present an automatic tracking method for segmentation of nerve bundles based on particle filters. We develop a novel approach to flexible particle representation of tubular structures based on Bezier splines. We construct an appropriate dynamics to reflect the continuity and smoothness properties of real nerve bundles. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We evaluate the results by comparing them to expert manual segmentation, and we demonstrate accurate and fast nerve tracking.
by Adrian Vasile Dalca.
S.M.
García, Lorenzo Daniel. "Robust segmentation of focal lesions on multi-sequence MRI in multiple sclerosis." Rennes 1, 2010. http://www.theses.fr/2010REN1S018.
Full textMultiple sclerosis (MS) affects around 80. 000 people in France. Magnetic resonance imaging (MRI) is an essential tool for diagnosis of MS and MRI-derived surrogate markers such as MS lesion volumes are often used as measures in MS clinical trials for the development of new treatments. The manual segmentation of these MS lesions is a time-consuming task that shows high inter- and intra-rater variability. We developed an automatic workflow for the segmentation of focal MS lesions on MRI. The segmentation method is based on the robust estimation of a parametric model of the intensities of the brain; lesions are detected as outliers to the model. We proposed two methods to include spatial information in the segmentation using mean shift and graph cut. We performed a quantitative evaluation of our workflow using synthetic and clinical images of two different centers to verify its accuracy and robustness
Chen, Zhibin. "Segmentation of MRI images using non parametric deformable models integrating fuzzy technique." Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001122.pdf.
Full textThe research goal of this thesis is to develop an automatic segmentation method to segment brain MRI images into different tissues (gray matter, white matter, and cerebrospinal fluid), providing quantitative and precise brain measurements. In this dissertation, we have developed three non-parametric deformable models integrating statistical information and fuzzy information of images to segment the brain into different tissue types from multi types of MRI images. We firstly present a histogram analysis based algorithm, where the intensity distribution of the MRI images is modeled via the mixture Gaussian model (MGM). The parameters of components in MGM are estimated via the Expectation Maximization (EM) algorithm. Then the estimated parameters are used to guide the evolution of the level set curves to achieve the brain tissue segmentation. We then propose an improved algorithm to region-based geometric active contour. Thanks to the new regional term, the new algorithm solves the underlying stability problem associated with the original algorithm, and achieves convergence with less iteration number compared with the original algorithm. Finally, we present a multiclass algorithm by integrating fuzzy segmentation with the level set methods. The algorithm uses a set of ordinary differential equations; each of them represents a class to be segmented. The multiclass algorithm reduces the computational complexity compared with the existing multiphase algorithm, so speeds up the convergence rate. All algorithms are evaluated with simulated and real MRI images, and quantitative analyses are provided. The results are very encouraging
Descoteaux, Maxime. "High angular resolution diffusion MRI : from local estimation to segmentation and tractography." Nice, 2008. http://www.theses.fr/2008NICE4000.
Full textAt the current resolution of diffusion-weighted (DW) magnetic resonance imaging (MRI), research groups agree that there are between one third to two thirds of imaging voxels in the human brain white matter that contain fiber crossing bundles. This thesis tackles the important problem of recovering fiber crossing bundles from DW-MRI measurements. The main goal is to overcome the limitations of diffusion tensor imaging (DTI). It is well-known that imaging voxels where there are multiple fiber crossings produce a non-Gaussian DW signal. This is precisely where DTI is limited due to the intrinsic Gaussian assumption of the technique. Hence, this thesis is dedicated to the development of local reconstruction methods, segmentation and tractography algorithms able to infer multiple fiber crossing from DW-MRI data. To do so, high angular resolution diffusion imaging (HARDI) is used to measure DW images along several directions. Q-ball imaging (QBI) is a recent such HARDI technique that reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima aligned with the underlying fiber directions at every voxel. QBI and the diffusion ODF will play a central role in this thesis. There are many original contributions in this thesis. First, we propose a robust estimation of the HARDI signal using a closed-form regularization algorithm based on the spherical harmonics. Then, we estimate the apparent coefficient coefficient (ADC) to study HARDI anisotropy measures and to discriminate voxels with underlying isotropic, single fiber and multiple fiber distributions. Next, we develop a linear, robust and analytical QBI solution using the spherical harmonic basis, which is used in a new statistical region-based active contour algorithm to segment important white matter fiber bundles. In addition, we develop a new spherical deconvolution sharpening method that transforms the diffusion q-ball ODF into a fiber ODF. Finally, we propose a new deterministic tractography algorithm and a new probabilistic tractography algorithm exploiting the full distribution of the fiber ODF. Overall, we show local reconstruction, segmentation and tracking results on complex fiber regions with known fiber crossing on simulated HARDI data, on a biological phantom and on multiple human brain datasets. Most current DTI based methods neglect these complex fibers, which might lead to wrong interpretations of the brain anatomy and functioning
Lin, Xiangbo. "Knowledge-based image segmentation using deformable registration: application to brain MRI images." Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001121.pdf.
Full textThe research goal of this thesis is a contribution to the intra-modality inter-subject non-rigid medical image registration and the segmentation of 3D brain MRI images in normal case. The well-known Demons non-rigid algorithm is studied, where the image intensities are used as matching features. A new force computation equation is proposed to solve the mismatch problem in some regions. The efficiency is shown through numerous evaluations on simulated and real data. For intensity based inter-subject registration, normalizing the image intensities is important for satisfying the intensity correspondence requirements. A non-rigid registration method combining both intensity and spatial normalizations is proposed. Topology constraints are introduced in the deformable model to preserve an expected property in homeomorphic targets registration. The solution comes from the correction of displacement points with negative Jacobian determinants. Based on the registration, a segmentation method of the internal brain structures is studied. The basic principle is represented by ontology of prior shape knowledge of target internal structure. The shapes are represented by a unified distance map computed from the atlas and the deformed atlas, and then integrated into the similarity metric of the cost function. A balance parameter is used to adjust the contributions of the intensity and shape measures. The influence of different parameters of the method and comparisons with other registration methods were performed. Very good results are obtained on the segmentation of different internal structures of the brain such as central nuclei and hippocampus
Zhang, Lawrence M. Eng Massachusetts Institute of Technology. "Bootstrapping fully-automatic temporal fetal brain segmentation in volumetric MRI time series." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122993.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 41-42).
We present a method for bootstrapping training data for the task of segmenting fetal brains in volumetric MRI time series data. Temporal analysis of MRI images requires accurate segmentation across frames, despite large amounts of unpredictable motion. We use the predicted segmentations of a baseline model and leverage anatomical structure of the fetal brain to automatically select the "good frames" that have accurate segmentations. We use these good frames to bootstrap further model training. We also introduce a novel temporal segmentation model that predicts segmentations using a history of previous segmentations, thus utilizing the temporal nature of the data. Our results show that these two approaches do not provide conclusive improvements to the quality of segmentations. Further exploration into the automatic choice of good frames is needed before
by Lawrence Zhang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
VIRZì, Alessio. "3D segmentation of pelvic structures in pediatric MRI for surgical planning applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT002/document.
Full textSurgical planning relies on the patient’s anatomy, and it is often based on medical images acquired before the surgery. This is in particular the case for pelvic surgery on children, for various indications such as malformations or tumors. In this particular anatomical region, due to its high vascularization and innervation, a good surgical planning is extremely important to avoid potential functional damages to the patient’s organs that could strongly affect their quality of life. In clinical practice the standard procedure is still to visually analyze, slice by slice, the images of the pelvic region. This task, even if quite easily performed by the expert radiologists, is difficult and tedious for the surgeons due to the complexity and variability of the anatomical structures and hence their images. Moreover, due to specific anatomy depending on the age of the patient, all the difficulties of the surgical planning are emphasized in the case of children, and a clear anatomical understanding is even more important than for the adults. For these reasons, it is very important and challenging to provide the surgeons with patient-specific 3D reconstructions, obtained from the segmentation of MRI images. In this work we propose a set of segmentation tools for pelvic MRI images of pediatric patients. In particular, we focus on three important pelvic structures: the pelvic bones, the pelvic vessels and the urinary bladder. For pelvic bones, we propose a semi-automatic approach based on template registration and deformable models. The main contribution of the proposed method is the introduction of a set of bones templates for different age ranges, which allows us to take into account the bones variability during growth. For vessels segmentation, we propose a patch-based deep learning approach using transfer learning, thus requiring few training data. The main contribution of this work is the design of a semi-automatic strategy for patches extraction, which allows the user to focus only on the vessels of interest for surgical planning. For bladder segmentation, we propose to use a deformable model approach that is particularly robust to image inhomogeneities and partial volume effects, which are often present in pediatric MRI images. All the developed segmentation methods are integrated in an open-source platform for medical imaging, delivering powerful tools and user-friendly GUIs to the surgeons. Furthermore, we set up a processing and portability workflow for visualization of the 3D patient specific models, allowing surgeons to generate, visualize and share within the hospital the patient specific 3D models. Finally, the results obtained with the proposed methods are quantitatively and qualitatively evaluated by pediatric surgeons, which demonstrates their potentials for clinical use in surgical planning procedures