Journal articles on the topic 'Knee segmentation in MRI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Knee segmentation in MRI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Riza, Sulaiman, Djasmir Marlinawati, and Mohamad Amran Mohd Fahmi. "COMSeg technique for MRI knee cartilage segmentation." International Review of Applied Sciences and Engineering 10, no. 2 (December 2019): 147–55. http://dx.doi.org/10.1556/1848.2019.0018.
Full textOei, Edwin H. G., Tijmen A. van Zadelhoff, Susanne M. Eijgenraam, Stefan Klein, Jukka Hirvasniemi, and Rianne A. van der Heijden. "3D MRI in Osteoarthritis." Seminars in Musculoskeletal Radiology 25, no. 03 (June 2021): 468–79. http://dx.doi.org/10.1055/s-0041-1730911.
Full textMore, Sujeet, Jimmy Singla, Ahed Abugabah, and Ahmad Ali AlZubi. "Machine Learning Techniques for Quantification of Knee Segmentation from MRI." Complexity 2020 (December 7, 2020): 1–13. http://dx.doi.org/10.1155/2020/6613191.
Full textBarendregt, Anouk M., Valentina Mazzoli, J. Merlijn van den Berg, Taco W. Kuijpers, Mario Maas, Aart J. Nederveen, and Robert Hemke. "T1ρ-mapping for assessing knee joint cartilage in children with juvenile idiopathic arthritis — feasibility and repeatability." Pediatric Radiology 50, no. 3 (November 9, 2019): 371–79. http://dx.doi.org/10.1007/s00247-019-04557-4.
Full textZhang, Ying, Mo Ruan, Hongbo Tan, Ming Chen, and Yongqing Xu. "Analysis of the Effect of Intra-Articular Injection of Platelet-Rich Plasma on Knee Arthritis Pain Based on MRI Image Segmentation Algorithm." Journal of Medical Imaging and Health Informatics 11, no. 1 (January 1, 2021): 192–96. http://dx.doi.org/10.1166/jmihi.2021.3441.
Full textKashyap, S., H. Zhang, and M. Sonka. "Accurate Fully Automated 4D Segmentation of Osteoarthritic Knee MRI." Osteoarthritis and Cartilage 25 (April 2017): S227—S228. http://dx.doi.org/10.1016/j.joca.2017.02.391.
Full textSaygili, Ahmet, and Songül Albayrak. "Knee Meniscus Segmentation and Tear Detection from MRI: A Review." Current Medical Imaging Formerly Current Medical Imaging Reviews 16, no. 1 (January 6, 2020): 2–15. http://dx.doi.org/10.2174/1573405614666181017122109.
Full textKumar, Deepak, and Jitendra Bhaskar. "A Review on Modelling of Knee Joint Using Medical Imaging Methods." INTERNATIONAL JOURNAL OF ADVANCED PRODUCTION AND INDUSTRIAL ENGINEERING 5, no. 4 (October 5, 2020): 84–89. http://dx.doi.org/10.35121/ijapie202001146.
Full textDam, E. B., and J. Marques. "422 AUTOMATIC SEGMENTATION OF BONE AND CARTILAGE FROM KNEE MRI." Osteoarthritis and Cartilage 19 (September 2011): S196. http://dx.doi.org/10.1016/s1063-4584(11)60449-4.
Full textAprovitola, Andrea, and Luigi Gallo. "Knee bone segmentation from MRI: A classification and literature review." Biocybernetics and Biomedical Engineering 36, no. 2 (2016): 437–49. http://dx.doi.org/10.1016/j.bbe.2015.12.007.
Full textMohammadi, Ali, Katariina A. H. Myller, Petri Tanska, Jukka Hirvasniemi, Simo Saarakkala, Juha Töyräs, Rami K. Korhonen, and Mika E. Mononen. "Rapid CT-based Estimation of Articular Cartilage Biomechanics in the Knee Joint Without Cartilage Segmentation." Annals of Biomedical Engineering 48, no. 12 (November 11, 2020): 2965–75. http://dx.doi.org/10.1007/s10439-020-02666-y.
Full textHan, Yue Mei. "Study on 3D Model Reconstruction of Human Knee Joint Based on MRI." Applied Mechanics and Materials 333-335 (July 2013): 934–37. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.934.
Full textWang, Lijuan, and Gaoyuan Cui. "The Value of Computed Tomography Three-Dimensional Imaging Technology in the Diagnosis and Treatment of Sports Knee Ligament Strain." Journal of Medical Imaging and Health Informatics 10, no. 9 (August 1, 2020): 2067–72. http://dx.doi.org/10.1166/jmihi.2020.3123.
Full textNavkar, Nikhil. "Feasibility study on MRI segmentation of knee structures for computer-assisted surgery." Qatar Foundation Annual Research Forum Proceedings, no. 2013 (November 2013): BIOP 028. http://dx.doi.org/10.5339/qfarf.2013.biop-028.
Full textPang, Jianfei, PengYue Li, Mingguo Qiu, Wei Chen, and Liang Qiao. "Automatic Articular Cartilage Segmentation Based on Pattern Recognition from Knee MRI Images." Journal of Digital Imaging 28, no. 6 (February 21, 2015): 695–703. http://dx.doi.org/10.1007/s10278-015-9780-x.
Full textAlmajalid, Rania, Juan Shan, Yaodong Du, and Ming Zhang. "Identification of Knee Cartilage Changing Pattern." Applied Sciences 9, no. 17 (August 22, 2019): 3469. http://dx.doi.org/10.3390/app9173469.
Full textLiu, Fang. "Improving Quantitative Magnetic Resonance Imaging Using Deep Learning." Seminars in Musculoskeletal Radiology 24, no. 04 (August 2020): 451–59. http://dx.doi.org/10.1055/s-0040-1709482.
Full textNoorveriandi, Henry, Matthew J. Parkes, Michael J. Callaghan, David T. Felson, Terence W. O'Neill, and Richard Hodgson. "Assessment of bone marrow oedema-like lesions using MRI in patellofemoral knee osteoarthritis: comparison of different MRI pulse sequences." British Journal of Radiology 94, no. 1124 (August 1, 2021): 20201367. http://dx.doi.org/10.1259/bjr.20201367.
Full textGaj, Sibaji, Mingrui Yang, Kunio Nakamura, and Xiaojuan Li. "Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks." Magnetic Resonance in Medicine 84, no. 1 (December 2, 2019): 437–49. http://dx.doi.org/10.1002/mrm.28111.
Full textZhang, Ping, Baohai Yu, Ranxu Zhang, Xiaoshuai Chen, Shuying Shao, Yan Zeng, Jianling Cui, and Jian Zhao. "Longitudinal study of the morphological and T2* changes of knee cartilages of marathon runners using prototype software for automatic cartilage segmentation." British Journal of Radiology 94, no. 1119 (March 1, 2021): 20200833. http://dx.doi.org/10.1259/bjr.20200833.
Full textKashyap, S., H. Zhang, and M. Sonka. "Just Enough Interaction for Fast Minimally Interactive Correction of 4D Segmentation of Knee MRI." Osteoarthritis and Cartilage 25 (April 2017): S224—S225. http://dx.doi.org/10.1016/j.joca.2017.02.388.
Full textDodin, Pierre, Johanne Martel-Pelletier, Jean-Pierre Pelletier, and François Abram. "A fully automated human knee 3D MRI bone segmentation using the ray casting technique." Medical & Biological Engineering & Computing 49, no. 12 (October 29, 2011): 1413–24. http://dx.doi.org/10.1007/s11517-011-0838-8.
Full textNiu, Junlong, Xiansheng Qin, Jing Bai, and Haiyan Li. "Reconstruction and optimization of the 3D geometric anatomy structure model for subject-specific human knee joint based on CT and MRI images." Technology and Health Care 29 (March 25, 2021): 221–38. http://dx.doi.org/10.3233/thc-218022.
Full textHotfiel, Thilo, Svenja Höger, Armin M. Nagel, Michael Uder, Wolfgang Kemmler, Raimund Forst, Martin Engelhardt, Casper Grim, and Rafael Heiss. "Multi-Parametric Analysis of Below-Knee Compression Garments on Delayed-Onset Muscle Soreness." International Journal of Environmental Research and Public Health 18, no. 7 (April 6, 2021): 3798. http://dx.doi.org/10.3390/ijerph18073798.
Full textPanfilov, E., A. Tiulpin, M. Juntunen, V. Casula, M. Nieminen, and S. Saarakkala. "Automatic knee cartilage and menisci segmentation from 3D-DESS MRI using deep semi-supervised learning." Osteoarthritis and Cartilage 27 (April 2019): S390—S391. http://dx.doi.org/10.1016/j.joca.2019.02.391.
Full textChen, Hao, André M. J. Sprengers, Yan Kang, and Nico Verdonschot. "Automated segmentation of trabecular and cortical bone from proton density weighted MRI of the knee." Medical & Biological Engineering & Computing 57, no. 5 (December 5, 2018): 1015–27. http://dx.doi.org/10.1007/s11517-018-1936-7.
Full textBurton, William, Casey Myers, and Paul Rullkoetter. "Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks." Computer Methods and Programs in Biomedicine 189 (June 2020): 105328. http://dx.doi.org/10.1016/j.cmpb.2020.105328.
Full textSaid, Oliver, Justus Schock, Daniel Benjamin Abrar, Philipp Schad, Christiane Kuhl, Teresa Nolte, Matthias Knobe, Andreas Prescher, Daniel Truhn, and Sven Nebelung. "In-Situ Cartilage Functionality Assessment Based on Advanced MRI Techniques and Precise Compartmental Knee Joint Loading through Varus and Valgus Stress." Diagnostics 11, no. 8 (August 14, 2021): 1476. http://dx.doi.org/10.3390/diagnostics11081476.
Full textLee, Han Sang, and Helen Hong. "Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts." Journal of KIISE 42, no. 10 (October 15, 2015): 1222–30. http://dx.doi.org/10.5626/jok.2015.42.10.1222.
Full textZhou, Zhaoye, Gengyan Zhao, Richard Kijowski, and Fang Liu. "Deep convolutional neural network for segmentation of knee joint anatomy." Magnetic Resonance in Medicine 80, no. 6 (May 17, 2018): 2759–70. http://dx.doi.org/10.1002/mrm.27229.
Full textMeng, Qingen, John Fisher, and Ruth Wilcox. "The effects of geometric uncertainties on computational modelling of knee biomechanics." Royal Society Open Science 4, no. 8 (August 2017): 170670. http://dx.doi.org/10.1098/rsos.170670.
Full textParker, David A., Samuel Grasso, Corey Scholes, Brett Fritsch, and Qing Li. "Quantitative MRI Evaluation of Tunnel placement in ACL Reconstruction." Orthopaedic Journal of Sports Medicine 5, no. 5_suppl5 (May 1, 2017): 2325967117S0018. http://dx.doi.org/10.1177/2325967117s00180.
Full textFotinos‐Hoyer, Amber Kassel, Ali Guermazi, Hernán Jara, Felix Eckstein, Al Ozonoff, Hussain Khard, Alexander Norbash, Klaus Bohndorf, and Frank W. Roemer. "Assessment of synovitis in the osteoarthritic knee: Comparison between manual segmentation, semiautomated segmentation, and semiquantitative assessment using contrast‐enhanced fat‐suppressed T 1 ‐weighted MRI." Magnetic Resonance in Medicine 64, no. 2 (May 25, 2010): 604–9. http://dx.doi.org/10.1002/mrm.22401.
Full textHunter, D. J., J. Niu, Y. Zhang, S. Totterman, J. Tamez, C. Dabrowski, R. Davies, et al. "Change in cartilage morphometry: a sample of the progression cohort of the Osteoarthritis Initiative." Annals of the Rheumatic Diseases 68, no. 3 (April 13, 2008): 349–56. http://dx.doi.org/10.1136/ard.2007.082107.
Full textCiba, Malin, Eva-Maria Winkelmeyer, Justus Schock, Philipp Schad, Niklas Kotowski, Teresa Nolte, Lena Marie Wollschläger, et al. "Comprehensive Assessment of Medial Knee Joint Instability by Valgus Stress MRI." Diagnostics 11, no. 8 (August 9, 2021): 1433. http://dx.doi.org/10.3390/diagnostics11081433.
Full textOwusu-Akyaw, Kwadwo A., Sophia Y. Kim, Charles E. Spritzer, Amber T. Collins, Zoë A. Englander, Gangadhar M. Utturkar, William E. Garrett, and Louis E. DeFrate. "Determination of the Position of the Knee at the Time of an Anterior Cruciate Ligament Rupture for Male Versus Female Patients by an Analysis of Bone Bruises." American Journal of Sports Medicine 46, no. 7 (April 18, 2018): 1559–65. http://dx.doi.org/10.1177/0363546518764681.
Full textBerta, Agnes, Matthew S. Shive, Andrew K. Lynn, Alan Getgood, Saara Totterman, Grahame Busby, Jerome Hollenstein, Gábor Vásárhelyi, Imre Kéki, and László Hangody. "Follow-Up Study Evaluating the Long Term Outcome of ChondroMimetic in the Treatment of Osteochondral Defects in the Knee." Applied Sciences 10, no. 16 (August 14, 2020): 5642. http://dx.doi.org/10.3390/app10165642.
Full textWinkelmeyer, Eva-Maria, Justus Schock, Lena Marie Wollschläger, Philipp Schad, Marc Sebastian Huppertz, Niklas Kotowski, Andreas Prescher, Christiane Kuhl, Daniel Truhn, and Sven Nebelung. "Seeing Beyond Morphology-Standardized Stress MRI to Assess Human Knee Joint Instability." Diagnostics 11, no. 6 (June 4, 2021): 1035. http://dx.doi.org/10.3390/diagnostics11061035.
Full textPIANIGIANI, SILVIA, MARTA D'AIUTO, DAVIDE CROCE, and BERNARDO INNOCENTI. "ARE MRIs NECESSARY TO DEVELOP SUBJECT-SPECIFIC CARTILAGE AND MENISCI GEOMETRIES FOR SUBJECT-SPECIFIC KNEE MODELS?" Journal of Mechanics in Medicine and Biology 17, no. 03 (October 7, 2016): 1750049. http://dx.doi.org/10.1142/s021951941750049x.
Full textKubicek, Penhaker, Augustynek, Cerny, and Oczka. "Segmentation of Articular Cartilage and Early Osteoarthritis based on the Fuzzy Soft Thresholding Approach Driven by Modified Evolutionary ABC Optimization and Local Statistical Aggregation." Symmetry 11, no. 7 (July 2, 2019): 861. http://dx.doi.org/10.3390/sym11070861.
Full textEckstein, F., S. Maschek, W. Wirth, M. Hudelmaier, W. Hitzl, B. Wyman, M. Nevitt, and M.-P. Hellio Le Graverand. "One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status." Annals of the Rheumatic Diseases 68, no. 5 (June 2, 2008): 674–79. http://dx.doi.org/10.1136/ard.2008.089904.
Full textDesai, Arjun D., Francesco Caliva, Claudia Iriondo, Aliasghar Mortazi, Sachin Jambawalikar, Ulas Bagci, Mathias Perslev, et al. "The International Workshop on Osteoarthritis Imaging Knee MRI Segmentation Challenge: A Multi-Institute Evaluation and Analysis Framework on a Standardized Dataset." Radiology: Artificial Intelligence 3, no. 3 (May 1, 2021): e200078. http://dx.doi.org/10.1148/ryai.2021200078.
Full textFarber, J. M., J. Tamez-Pena, S. Totterman, J. Larkin, B. Holladay, and F. Heis. "Pre-operative evaluation of patients undergoing knee articular cartilage repair: MRI 3D thickness maps derived from a validated, automated segmentation platform - initial results." Osteoarthritis and Cartilage 21 (April 2013): S202. http://dx.doi.org/10.1016/j.joca.2013.02.422.
Full textKashyap, Satyananda, Honghai Zhang, Karan Rao, and Milan Sonka. "Learning-Based Cost Functions for 3-D and 4-D Multi-Surface Multi-Object Segmentation of Knee MRI: Data From the Osteoarthritis Initiative." IEEE Transactions on Medical Imaging 37, no. 5 (May 2018): 1103–13. http://dx.doi.org/10.1109/tmi.2017.2781541.
Full textZheng, Hai Dong, Rong Ying Huang, Hong Guang Zheng, and Yun Fei Guo. "The Effects of Bony Structure Simplification Methods on the Biomechanics of Tibiofemoral Joint in Series of Flexion Angles." Applied Mechanics and Materials 163 (April 2012): 70–73. http://dx.doi.org/10.4028/www.scientific.net/amm.163.70.
Full textJansen, M., S. Mastbergen, T. D. Turmezei, J. W. Mackay, and F. Lafeber. "POS1091 KNEE JOINT DISTRACTION RESULTS IN MRI CARTILAGE THICKNESS INCREASE UP TO TEN YEARS AFTER TREATMENT." Annals of the Rheumatic Diseases 80, Suppl 1 (May 19, 2021): 825.1–825. http://dx.doi.org/10.1136/annrheumdis-2021-eular.1321.
Full textKabalyk, M. A. "Opportunities of magnetic resonance imaging in diagnosis of microstructural changes of articular cartilage in osteoarthritis." Perm Medical Journal 35, no. 3 (December 15, 2018): 15–23. http://dx.doi.org/10.17816/pmj35315-23.
Full textWirth, W., A. S. Chaudhari, J. Kemnitz, C. F. Baumgartner, E. Konukoglu, D. Fürst, and F. Eckstein. "Agreement and accuracy of femorotibial cartilage morphometry in radiographic knee OA using different training sets for automateddeep learning segmentation - comparison between flash and dess MRI." Osteoarthritis and Cartilage 29 (April 2021): S334. http://dx.doi.org/10.1016/j.joca.2021.02.435.
Full textTrattnig, S., C. Scotti, D. Laurent, V. Juras, S. Hacker, B. Cole, L. Pasa, et al. "POS0277 ANABOLIC EFFECT OF LNA043, A NOVEL DISEASE-MODIFYING OSTEOARTHRITIS DRUG CANDIDATE: RESULTS FROM AN IMAGING-BASED PROOF-OF-CONCEPT TRIAL IN PATIENTS WITH FOCAL ARTICULAR CARTILAGE LESIONS." Annals of the Rheumatic Diseases 80, Suppl 1 (May 19, 2021): 363.2–363. http://dx.doi.org/10.1136/annrheumdis-2021-eular.447.
Full textJaremko, J. L., B. Felfeliyan, A. Rakkunedeth, B. Thejeel, V. Quinn-Laurin, M. Østergaard, P. G. Conaghan, R. Lambert, J. Ronsky, and W. P. Maksymowych. "AB0594 IMPROVING OSTEOARTHRITIS CARE BY AUTOMATIC MEASUREMENT OF HIP EFFUSION USING AI." Annals of the Rheumatic Diseases 80, Suppl 1 (May 19, 2021): 1334.1–1334. http://dx.doi.org/10.1136/annrheumdis-2021-eular.2196.
Full text