Journal articles on the topic 'Knockin mouse model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Knockin mouse model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Savva, Isavella, Charalampos Stefanou, Myrtani Pieri, et al. "MP036A NOVEL KNOCKIN MOUSE MODEL FOR ALPORT SYNDROME." Nephrology Dialysis Transplantation 31, suppl_1 (2016): i354. http://dx.doi.org/10.1093/ndt/gfw182.06.
Full textLuo, Yichen, Liang Du, Zhimeng Yao, et al. "Generation and Application of Inducible Chimeric RNA ASTN2-PAPPAas Knockin Mouse Model." Cells 11, no. 2 (2022): 277. http://dx.doi.org/10.3390/cells11020277.
Full textde Winter, J., M. Yuen, R. Van der Pijl, et al. "P.162Novel Kbtbd13R408C-knockin mouse model phenocopies NEM6 myopathy." Neuromuscular Disorders 29 (October 2019): S95. http://dx.doi.org/10.1016/j.nmd.2019.06.217.
Full textWegener, Eike, Cornelia Brendel, Andre Fischer, Swen Hülsmann, Jutta Gärtner, and Peter Huppke. "Characterization of the MeCP2R168X Knockin Mouse Model for Rett Syndrome." PLoS ONE 9, no. 12 (2014): e115444. http://dx.doi.org/10.1371/journal.pone.0115444.
Full textRose, Samuel J., Lisa H. Kriener, Ann K. Heinzer, et al. "The first knockin mouse model of episodic ataxia type 2." Experimental Neurology 261 (November 2014): 553–62. http://dx.doi.org/10.1016/j.expneurol.2014.08.001.
Full textSundberg, J. P., C. H. Pratt, K. A. Silva, et al. "394 Card14 knockin mouse model of psoriasis and psoriatic arthritis." Journal of Investigative Dermatology 136, no. 5 (2016): S70. http://dx.doi.org/10.1016/j.jid.2016.02.428.
Full textBaelde, R., A. Fortes Monteiro, E. Nollet, et al. "P400 Kbtbd13R408C-knockin mouse model elucidates mitochondrial pathomechanism in NEM6." Neuromuscular Disorders 33 (October 2023): S123. http://dx.doi.org/10.1016/j.nmd.2023.07.231.
Full textYuan, Weiming, Xiangshu Wen, Ping Rao, Seil Kim, and Peter Cresswell. "Characterization of a human CD1d-knockin mouse (106.44)." Journal of Immunology 188, no. 1_Supplement (2012): 106.44. http://dx.doi.org/10.4049/jimmunol.188.supp.106.44.
Full textGuo, Qinxi, Hui Zheng, and Nicholas John Justice. "Central CRF system perturbation in an Alzheimer's disease knockin mouse model." Neurobiology of Aging 33, no. 11 (2012): 2678–91. http://dx.doi.org/10.1016/j.neurobiolaging.2012.01.002.
Full textNomura, Naohiro, Masato Tajima, Noriko Sugawara, et al. "Generation and analyses of R8L barttin knockin mouse." American Journal of Physiology-Renal Physiology 301, no. 2 (2011): F297—F307. http://dx.doi.org/10.1152/ajprenal.00604.2010.
Full textHammersen, Johanna, Jin Hou, Stephanie Wünsche, Sven Brenner, Thomas Winkler, and Holm Schneider. "A new mouse model of junctional epidermolysis bullosa: the LAMB3 628G>A knockin mouse." Molecular and Cellular Pediatrics 1, Suppl 1 (2014): A12. http://dx.doi.org/10.1186/2194-7791-1-s1-a12.
Full textHammersen, Johanna, Jin Hou, Stephanie Wünsche, Sven Brenner, Thomas Winkler, and Holm Schneider. "A New Mouse Model of Junctional Epidermolysis Bullosa: The LAMB3 628G>A Knockin Mouse." Journal of Investigative Dermatology 135, no. 3 (2015): 921–24. http://dx.doi.org/10.1038/jid.2014.466.
Full textYan, Dongqing, Robert E. Hutchison, and Golam Mohi. "Critical requirement for Stat5 in a mouse model of polycythemia vera." Blood 119, no. 15 (2012): 3539–49. http://dx.doi.org/10.1182/blood-2011-03-345215.
Full textEllegood, Jacob, Jason P. Lerch, and R. Mark Henkelman. "Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism." Autism Research 4, no. 5 (2011): 368–76. http://dx.doi.org/10.1002/aur.215.
Full textGilley, Jonathan, Robert Adalbert, and Michael P. Coleman. "Modelling early responses to neurodegenerative mutations in mice." Biochemical Society Transactions 39, no. 4 (2011): 933–38. http://dx.doi.org/10.1042/bst0390933.
Full textOhno, Shinji, Nobuyuki Ono, Fumio Seki, et al. "Measles Virus Infection of SLAM (CD150) Knockin Mice Reproduces Tropism and Immunosuppression in Human Infection." Journal of Virology 81, no. 4 (2006): 1650–59. http://dx.doi.org/10.1128/jvi.02134-06.
Full textvan den Maagdenberg, Arn M. J. M., Daniela Pietrobon, Tommaso Pizzorusso, et al. "A Cacna1a Knockin Migraine Mouse Model with Increased Susceptibility to Cortical Spreading Depression." Neuron 41, no. 5 (2004): 701–10. http://dx.doi.org/10.1016/s0896-6273(04)00085-6.
Full textQin, Mei, Tianjian Huang, Zhonghua Liu, et al. "Cerebral Protein Synthesis in a Knockin Mouse Model of the Fragile X Premutation." ASN Neuro 6, no. 5 (2014): 175909141455195. http://dx.doi.org/10.1177/1759091414551957.
Full textWu, Fenfen, Wentao Mi, Dennis K. Burns, et al. "A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis." Journal of Clinical Investigation 121, no. 10 (2011): 4082–94. http://dx.doi.org/10.1172/jci57398.
Full textTurnes, Bruna, Leo Mejia, Carl Nist-Lund, et al. "NEWLY DEVELOPED TECPR2 KNOCKIN MOUSE MODEL FOR THE STUDY OF TECPR2-RELATED DISORDER." IBRO Neuroscience Reports 15 (October 2023): S145. http://dx.doi.org/10.1016/j.ibneur.2023.08.189.
Full textNirala, Bikesh Kumar, Lyazat Kurenbekova, Tajhal Patel, et al. "Abstract 6713: Myc-regulated miR17, 20a modulate RANK expression in osteosarcoma." Cancer Research 83, no. 7_Supplement (2023): 6713. http://dx.doi.org/10.1158/1538-7445.am2023-6713.
Full textLiu, Yuning, Hong Xing, Bradley J. Wilkes, et al. "The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia." Brain Research Bulletin 165 (December 2020): 14–22. http://dx.doi.org/10.1016/j.brainresbull.2020.09.011.
Full textFan, Changfa, Xi Wu, Qiang Liu, et al. "A Human DPP4-Knockin Mouse’s Susceptibility to Infection by Authentic and Pseudotyped MERS-CoV." Viruses 10, no. 9 (2018): 448. http://dx.doi.org/10.3390/v10090448.
Full textHe, Daniel. "Abstract 5092: Non-IL-2 blocking Treg-depleting anti-human CD25 mAb primes potent anti-tumor immunity and synergizes anti-tumor effects of anti-PD-1 in a novel hIL-2RA knockin model." Cancer Research 83, no. 7_Supplement (2023): 5092. http://dx.doi.org/10.1158/1538-7445.am2023-5092.
Full textRongvaux, Anthony, Tim Willinger, Hitoshi Takizawa, et al. "Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo (153.5)." Journal of Immunology 186, no. 1_Supplement (2011): 153.5. http://dx.doi.org/10.4049/jimmunol.186.supp.153.5.
Full textSeo, Kyowon, Eun Kyoung Kim, Jaeil Choi, Dae-Seong Kim, and Jin-Hong Shin. "Functional recovery of a novel knockin mouse model of dysferlinopathy by readthrough of nonsense mutation." Molecular Therapy - Methods & Clinical Development 21 (June 2021): 702–9. http://dx.doi.org/10.1016/j.omtm.2021.04.015.
Full textBonnet, Marie, Fang Huang, Touati Benoukraf та ін. "Duality of Enhancer Functioning Mode Revealed in a Reduced TCRβ Gene Enhancer Knockin Mouse Model". Journal of Immunology 183, № 12 (2009): 7939–48. http://dx.doi.org/10.4049/jimmunol.0902179.
Full textMohamed, Rasha M. S. M., Sachio Morimoto, Islam A. A. E. H. Ibrahim та ін. "GSK-3β heterozygous knockout is cardioprotective in a knockin mouse model of familial dilated cardiomyopathy". American Journal of Physiology-Heart and Circulatory Physiology 310, № 11 (2016): H1808—H1815. http://dx.doi.org/10.1152/ajpheart.00771.2015.
Full textYang, Sung-Sen, Tetsuji Morimoto, Tatemitsu Rai, et al. "Molecular Pathogenesis of Pseudohypoaldosteronism Type II: Generation and Analysis of a Wnk4D561A/+ Knockin Mouse Model." Cell Metabolism 5, no. 5 (2007): 331–44. http://dx.doi.org/10.1016/j.cmet.2007.03.009.
Full textBaelde, R., V. Janssen, A. Fortes Monteiro, et al. "P407 Kbtbd13R408C-knockin mouse model reveals impaired relaxation kinetics as novel pathomechanism for NEM6 cardiomyopathy." Neuromuscular Disorders 33 (October 2023): S125. http://dx.doi.org/10.1016/j.nmd.2023.07.238.
Full textValenzuela, Alicia, Karen Fancher, Cat Lutz, and Stephen Rockwood. "Mouse Models for Immunology Research available from The Jackson Laboratory Repository." Journal of Immunology 198, no. 1_Supplement (2017): 121.17. http://dx.doi.org/10.4049/jimmunol.198.supp.121.17.
Full textZhao, Ling, Lemlem Alemu, Jun Cheng, Tao Zhen, Alan D. Friedman та Pu Paul Liu. "Functional Dissection of the C Terminus of CBFβ-SMMHC Indicates a Critical Role of the Multimerization Domain during Hematopoiesis and Leukemogenesis". Blood 124, № 21 (2014): 2218. http://dx.doi.org/10.1182/blood.v124.21.2218.2218.
Full textShimura, Daisuke, Yoichiro Kusakari, Tetsuo Sasano, et al. "Heterozygous deletion of sarcolipin maintains normal cardiac function." American Journal of Physiology-Heart and Circulatory Physiology 310, no. 1 (2016): H92—H103. http://dx.doi.org/10.1152/ajpheart.00411.2015.
Full textPrice, Brandee A., Ivette M. Sandoval, Fung Chan, et al. "Mislocalization and Degradation of Human P23H-Rhodopsin-GFP in a Knockin Mouse Model of Retinitis Pigmentosa." Investigative Opthalmology & Visual Science 52, no. 13 (2011): 9728. http://dx.doi.org/10.1167/iovs.11-8654.
Full textLudwig, Michael R., Kyoko Kojima, Gregory J. Bowersock, et al. "Surveying the serologic proteome in a tissue-specific kras(G12D) knockin mouse model of pancreatic cancer." PROTEOMICS 16, no. 3 (2016): 516–31. http://dx.doi.org/10.1002/pmic.201500133.
Full textLi, Kun, Christine L. Wohlford-Lenane, Rudragouda Channappanavar, et al. "Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice." Proceedings of the National Academy of Sciences 114, no. 15 (2017): E3119—E3128. http://dx.doi.org/10.1073/pnas.1619109114.
Full textSantillo, Alessandra, Sara Falvo, Massimo Venditti, et al. "D-Aspartate Depletion Perturbs Steroidogenesis and Spermatogenesis in Mice." Biomolecules 13, no. 4 (2023): 621. http://dx.doi.org/10.3390/biom13040621.
Full textRongvaux, Anthony, Tim Willinger, Hitoshi Takizawa, et al. "Human Thrombopoietin Knockin Mice Efficiently Support Human Hematopoiesis In Vivo." Blood 116, no. 21 (2010): 403. http://dx.doi.org/10.1182/blood.v116.21.403.403.
Full textDuan, Wenming, Manal Y. Gabril, Madeleine Moussa, et al. "Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model." Oncogene 24, no. 9 (2005): 1510–24. http://dx.doi.org/10.1038/sj.onc.1208229.
Full textvan Oort, Ralph J., Jonathan L. Respress, Na Li, et al. "Accelerated Development of Pressure Overload–Induced Cardiac Hypertrophy and Dysfunction in an RyR2-R176Q Knockin Mouse Model." Hypertension 55, no. 4 (2010): 932–38. http://dx.doi.org/10.1161/hypertensionaha.109.146449.
Full textZhao, Baobing, Yang Mei, Ronen Sumagin, et al. "Pleckstrin-2 Plays an Essential Role in the Pathogenesis of JAK2V617F-Induced Myeloproliferative Neoplasms." Blood 128, no. 22 (2016): 798. http://dx.doi.org/10.1182/blood.v128.22.798.798.
Full textKim, Caroline S., Vasily V. Vasko, Yasuhito Kato, et al. "AKT Activation Promotes Metastasis in a Mouse Model of Follicular Thyroid Carcinoma." Endocrinology 146, no. 10 (2005): 4456–63. http://dx.doi.org/10.1210/en.2005-0172.
Full textmora, conchi, Ainhoa Garcia, Nuria Marzo, et al. "Role of Cdk4 in immunological tolerance and in pancreatic beta cell mass homeostasis in T1D (99.14)." Journal of Immunology 182, no. 1_Supplement (2009): 99.14. http://dx.doi.org/10.4049/jimmunol.182.supp.99.14.
Full textZhao, Xiaofeng, Xu Peng, Shaogang Sun, Ann Y. J. Park, and Jun-Lin Guan. "Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development." Journal of Cell Biology 189, no. 6 (2010): 955–65. http://dx.doi.org/10.1083/jcb.200912094.
Full textDatta, Nabanita S., Tareq A. Samra, and Abdul B. Abou-Samra. "Parathyroid hormone induces bone formation in phosphorylation-deficient PTHR1 knockin mice." American Journal of Physiology-Endocrinology and Metabolism 302, no. 10 (2012): E1183—E1188. http://dx.doi.org/10.1152/ajpendo.00380.2011.
Full textVolta, Mattia, and Heather Melrose. "LRRK2 mouse models: dissecting the behavior, striatal neurochemistry and neurophysiology of PD pathogenesis." Biochemical Society Transactions 45, no. 1 (2017): 113–22. http://dx.doi.org/10.1042/bst20160238.
Full textUnno, T., M. Wakamori, M. Koike, et al. "Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6." Proceedings of the National Academy of Sciences 109, no. 43 (2012): 17693–98. http://dx.doi.org/10.1073/pnas.1212786109.
Full textZhao, L., H. Alkadi, E. M. Kwon та ін. "The C-terminal multimerization domain is essential for leukemia development by CBFβ-SMMHC in a mouse knockin model". Leukemia 31, № 12 (2017): 2841–44. http://dx.doi.org/10.1038/leu.2017.262.
Full textDeng, Yun-Ping, and Anton Reiner. "Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input." Journal of Comparative Neurology 524, no. 17 (2016): 3518–29. http://dx.doi.org/10.1002/cne.24013.
Full textCharbonneau, Noe L., Elise C. Manalo, Sara F. Tufa, et al. "Fibrillin‐1 in the Vasculature: In Vivo Accumulation of eGFP‐Tagged Fibrillin‐1 in a Knockin Mouse Model." Anatomical Record 303, no. 6 (2019): 1590–603. http://dx.doi.org/10.1002/ar.24217.
Full text