Academic literature on the topic 'Knots and links in $S^3$'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Knots and links in $S^3$.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Knots and links in $S^3$"
Manion, Andrew. "The rational Khovanov homology of 3-strand pretzel links." Journal of Knot Theory and Its Ramifications 23, no. 08 (July 2014): 1450040. http://dx.doi.org/10.1142/s0218216514500400.
Full textMULAZZANI, MICHELE. "ALL LINS-MANDEL SPACES ARE BRANCHED CYCLIC COVERINGS OF S3." Journal of Knot Theory and Its Ramifications 05, no. 02 (April 1996): 239–63. http://dx.doi.org/10.1142/s0218216596000175.
Full textKODA, YUYA. "LINKS AND SPINES." Journal of Knot Theory and Its Ramifications 21, no. 03 (March 2012): 1250027. http://dx.doi.org/10.1142/s0218216511009674.
Full textPlanat, Michel, Raymond Aschheim, Marcelo Amaral, and Klee Irwin. "Universal Quantum Computing and Three-Manifolds." Symmetry 10, no. 12 (December 19, 2018): 773. http://dx.doi.org/10.3390/sym10120773.
Full textGE, MO-LIN, LU-YU WANG, KANG XUE, and YONG-SHI WU. "AKUTZU-WADATI LINK POLYNOMIALS FROM FEYNMAN-KAUFFMAN DIAGRAMS." International Journal of Modern Physics A 04, no. 13 (August 10, 1989): 3351–73. http://dx.doi.org/10.1142/s0217751x89001370.
Full textRANKIN, STUART, ORTHO FLINT, and JOHN SCHERMANN. "ENUMERATING THE PRIME ALTERNATING KNOTS, PART I." Journal of Knot Theory and Its Ramifications 13, no. 01 (February 2004): 57–100. http://dx.doi.org/10.1142/s0218216504003044.
Full textOHTSUKI, TOMOTADA. "INVARIANTS OF KNOTS DERIVED FROM EQUIVARIANT LINKING MATRICES OF THEIR SURGERY PRESENTATIONS." International Journal of Mathematics 20, no. 07 (July 2009): 883–913. http://dx.doi.org/10.1142/s0129167x09005583.
Full textCautis, Sabin, Aaron D. Lauda, and Joshua Sussan. "Curved Rickard complexes and link homologies." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 769 (December 1, 2020): 87–119. http://dx.doi.org/10.1515/crelle-2019-0044.
Full textJablan, Slavik, Ljiljana Radović, and Radmila Sazdanović. "Knots and links in architecture." Pollack Periodica 7, Supplement 1 (January 2012): 65–76. http://dx.doi.org/10.1556/pollack.7.2012.s.6.
Full textLassen, Augusto E., Rogerio Riffel, Ana L. Chies-Santos, Evelyn Johnston, Boris Häußler, Gabriel M. Azevedo, Daniel Ruschel-Dutra, and Rogemar A. Riffel. "The metal-poor dwarf irregular galaxy candidate next to Mrk 1172." Monthly Notices of the Royal Astronomical Society 506, no. 3 (July 1, 2021): 3527–39. http://dx.doi.org/10.1093/mnras/stab1838.
Full textDissertations / Theses on the topic "Knots and links in $S^3$"
Cho, Karina Elle. "Enhancing the Quandle Coloring Invariant for Knots and Links." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/hmc_theses/228.
Full textGarza, César. "Examples of hyperbolic knots with distance 3 toroidal surgeries in S³." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2009. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textKrishna, Siddhi. "Taut foliations, positive braids, and the L-space conjecture:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108731.
Full textWe construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a prediction of the L--space conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot P(-2,3,7), and indeed along every pretzel knot P(-2,3,q), for q a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hyperbolic L-space knots. We adapt our techniques to construct taut foliations in every closed 3-manifold obtained along r-framed Dehn surgery along a positive 1-bridge braid, and indeed, along any positive braid knot, in S^3, where r < g(K)-1. These are the only examples of theorems producing taut foliations in surgeries along hyperbolic knots where the interval of surgery slopes is in terms of g(K)
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Gutierrez, Quispe Robert Gerson. "Aspectos de la teoría de nudos." Bachelor's thesis, 2019. http://hdl.handle.net/11086/14649.
Full textLos nudos, tal cual aparecen en nuestra vida cotidiana, son un objeto de estudio en la Matemática. La Teoría de Nudos es la rama de la Matemática que se encarga de su estudio. Un problema central es el de poder decir si dos nudos dados son equivalentes o no. Los matemáticos, en la búsqueda de responder esta pregunta, entre otras, han desarrollado diversas técnicas y herramientas en esta área de estudio. En este trabajo se hace un recorrido en el estudio de la Teoría de Nudos, comenzando con las definiciones más elementales, hasta llegar a estudiar herramientas sofisticadas como el polinomio de Alexander, el grupo de un nudo y las matrices de Seifert, entre otros. En los dos últimos capítulos se investigan los dos temas siguientes: nudos virtuales y presentaciones de Wirtinger. En este último se hace un aporte, dando una nueva familia infinita de presentaciones de Wirtinger no geométricas.
The knots we usually see in our lifes are studied in mathematics in the branch called Knot Theory. A main problem is to decide whether two knots are equivalent or not. Many tools and techniques have been developed by mathematicians in order to answer this and other related questions. In this work, we study Knot Theory from the beginning, with definitions and elementary notions, until some sophisticated concepts and tools like the Alexander polynomial, the knot group and Seifert matrices, among others. In the last two chapters, we work on the following two particular subjects: virtual knots and Wirtinger presentations. In this last one, we made a small contribution by presenting a new infinite family of Wirtinger presentations which are not geometric.
Fil: Gutierrez Quispe. Robert Gerson. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Books on the topic "Knots and links in $S^3$"
András, Stipsicz, and Szabó Zoltán 1965-, eds. Grid homology for knots and links. Providence, Rhode Island: American Mathematical Society, 2015.
Find full text1974-, Nelson Sam, ed. Quandles: An introduction to the algebra of knots. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textFlapan, Erica. Knots, molecules, and the universe: An introduction to topology. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textPrasolov, V. V. Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology. Providence, R.I: American Mathematical Society, 1997.
Find full textKnots, links, braids, and 3-manifolds: An introduction to the new invariants in low-dimensional topology. Providence, R.I: American Mathematical Society, 1997.
Find full textJaco, William H., Hyam Rubinstein, Craig David Hodgson, Martin Scharlemann, and Stephan Tillmann. Geometry and topology down under: A conference in honour of Hyam Rubinstein, July 11-22, 2011, The University of Melbourne, Parkville, Australia. Providence, Rhode Island: American Mathematical Society, 2013.
Find full text1978-, Usher Michael, ed. Low-dimensional and symplectic topology. Providence, R.I: American Mathematical Society, 2011.
Find full textBook chapters on the topic "Knots and links in $S^3$"
Karalashvili, O. "On Links Embedded into Surfaces of Heegaard Splittings of S 3." In Topics in Knot Theory, 289–303. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1695-4_16.
Full textÅström, Alexander, and Christoffer Åström. "Projections of Knots and Links." In Handbook of the Mathematics of the Arts and Sciences, 665–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-57072-3_16.
Full textÅström, Alexander, and Christoffer Åström. "Projections of Knots and Links." In Handbook of the Mathematics of the Arts and Sciences, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70658-0_16-1.
Full textPrzytycki, Józef H. "From Goeritz Matrices to Quasi-alternating Links." In The Mathematics of Knots, 257–316. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15637-3_9.
Full textKindermann, Philipp, Stephen Kobourov, Maarten Löffler, Martin Nöllenburg, André Schulz, and Birgit Vogtenhuber. "Lombardi Drawings of Knots and Links." In Lecture Notes in Computer Science, 113–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73915-1_10.
Full textFurusho, Hidekazu. "Galois Action on Knots II: Proalgebraic String Links and Knots." In Springer Proceedings in Mathematics & Statistics, 541–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37031-2_20.
Full textChbili, Nafaa. "From Alternating to Quasi-Alternating Links." In Knots, Low-Dimensional Topology and Applications, 179–89. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16031-9_8.
Full textKozlov, Dmitri. "Knots and Links As Form-Generating Structures." In Mathematics and Modern Art, 105–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24497-1_10.
Full textSulkowska, Joanna I., and Piotr Sułkowski. "Entangled Proteins: Knots, Slipknots, Links, and Lassos." In Springer Series in Solid-State Sciences, 201–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76596-9_8.
Full textSchücker, Thomas. "Knots and Their Links with Biology and Physics." In Geometry and Theoretical Physics, 285–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76353-3_11.
Full textConference papers on the topic "Knots and links in $S^3$"
Lescop, Christine. "On configuration space integrals for links." In Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2002. http://dx.doi.org/10.2140/gtm.2002.4.183.
Full textPrzytycki, Jozef H. "Skein module deformations of elementary moves on links." In Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2003. http://dx.doi.org/10.2140/gtm.2002.4.313.
Full textStanford, Theodore. "Some computational results on mod 2 finite-type invariants of knots and string links." In Invariants of Knots and 3--manifolds. Mathematical Sciences Publishers, 2004. http://dx.doi.org/10.2140/gtm.2002.4.363.
Full textMoeneclaey, Bart, Jochen Verbrugghe, Elad Mentovich, Paraskevas Bakopoulos, Johan Bauwelinck, and Xin Yin. "A 64 Gb/s PAM-4 Transimpedance Amplifier for Optical Links." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/ofc.2017.tu2d.3.
Full textProesel, Jonathan E., Clint L. Schow, and Alexander V. Rylyakov. "Ultra Low Power 10- to 25-Gb/s CMOS-Driven VCSEL Links." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ofc.2012.ow4i.3.
Full textPontaza, Juan P., Mohan Kotikanyadanam, Piet Moeleker, Raghu G. Menon, and Shankar Bhat. "Fairing Evaluation Based on Numerical Simulation." In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83883.
Full textvon Lindeiner, J. B., J. D. Ingham, A. Wonfor, J. Zhu, R. V. Penty, and I. H. White. "100 Gb/s Uncooled DWDM using Orthogonal Coding for Low-cost Datacommunication Links." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ofc.2014.m2e.3.
Full textLedentsov, N., Ł. Chorchos, V. A. Shchukin, V. P. Kalosha, J. P. Turkiewicz, and N. N. Ledentsov. "Development of VCSELs and VCSEL-based Links for Data Communication beyond 50Gb/s." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ofc.2020.m2a.3.
Full textRedwan, B., V. Kösek, C. Begher, K. Nikolova, M. Matip, M. Puchner, and B. Thiel. "Links-transaxillärer minimal-invasiver Zugang für die Resektion und Rekonstruktion der Brustwirbelkörper BWK2 und 3." In DACH-Jahrestagung Thoraxchirurgie. Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-1694216.
Full textPapistas, Ioannis A., and Vasilis F. Pavlidis. "Comparative study of crosstalk noise due to inductive links on heterogeneous 3-D ICs." In 2017 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO). IEEE, 2017. http://dx.doi.org/10.1109/nemo.2017.7964271.
Full text