Academic literature on the topic 'Korteweg-de Vries systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Korteweg-de Vries systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Korteweg-de Vries systems"

1

Loris, Ignace. "Solutions of Coupled Korteweg-de Vries Systems." Journal of the Physical Society of Japan 70, no. 3 (2001): 662–65. http://dx.doi.org/10.1143/jpsj.70.662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yushkov, E. V. "Blowup in Korteweg-de Vries-type systems." Theoretical and Mathematical Physics 173, no. 2 (2012): 1498–506. http://dx.doi.org/10.1007/s11232-012-0129-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Langer, Joel, and Ron Perline. "Curve motion inducing modified Korteweg-de Vries systems." Physics Letters A 239, no. 1-2 (1998): 36–40. http://dx.doi.org/10.1016/s0375-9601(97)00945-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karasu, Ayşe (Kalkanli). "Painlevé classification of coupled Korteweg–de Vries systems." Journal of Mathematical Physics 38, no. 7 (1997): 3616–22. http://dx.doi.org/10.1063/1.532056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leble, S. B., and N. V. Ustinov. "Korteweg‐de Vries–modified Korteweg‐de Vries systems and Darboux transforms in 1+1 and 2+1 dimensions." Journal of Mathematical Physics 34, no. 4 (1993): 1421–28. http://dx.doi.org/10.1063/1.530165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buchstaber, V. M. "Polynomial dynamical systems and the Korteweg—de Vries equation." Proceedings of the Steklov Institute of Mathematics 294, no. 1 (2016): 176–200. http://dx.doi.org/10.1134/s0081543816060110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Espinosa-Cerón, A., B. A. Malomed, J. Fujioka, and R. F. Rodríguez. "Symmetry breaking in linearly coupled Korteweg-de Vries systems." Chaos: An Interdisciplinary Journal of Nonlinear Science 22, no. 3 (2012): 033145. http://dx.doi.org/10.1063/1.4752244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KARASU(KALKANLI), AYŞE, and TUBA KILIÇ. "INTEGRABILITY OF A NONAUTONOMOUS COUPLED KdV SYSTEM." International Journal of Modern Physics C 15, no. 05 (2004): 609–17. http://dx.doi.org/10.1142/s0129183104006145.

Full text
Abstract:
The Painlevé property of coupled, nonautonomous Korteweg–de Vries (KdV) type of systems is studied. The conditions under which the systems pass the Painlevé test for integrability are obtained. For some of the integrable cases, exact solutions are given.
APA, Harvard, Vancouver, ISO, and other styles
9

Inc, M., and Y. Cherruault. "A reliable approach to the Korteweg‐de Vries equation." Kybernetes 34, no. 7/8 (2005): 951–59. http://dx.doi.org/10.1108/03684920510605777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marx, Swann, and Eduardo Cerpa. "Output feedback stabilization of the Korteweg–de Vries equation." Automatica 87 (January 2018): 210–17. http://dx.doi.org/10.1016/j.automatica.2017.07.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Korteweg-de Vries systems"

1

Dag, Huseyin. "A Class Of Super Integrable Korteweg-de Vries Systems." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1079854/index.pdf.

Full text
Abstract:
In this thesis, we investigate the integrability of a class of multicomponent super integrable Korteweg-de Vries (KdV) systems in (1 + 1) dimensions in the context of recursion operator formalism. Integrability conditions are obtained for the system with arbitrary number of components. In particular, from these conditions we construct two new subclasses of multicomponent super integrable KdV systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Simsek, Gorkem. "Energy Preserving Methods For Korteweg De Vries Type Equations." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12614216/index.pdf.

Full text
Abstract:
Two well-known types of water waves are shallow water waves and the solitary waves. The former waves are those waves which have larger wavelength than the local water depth and the latter waves are used for the ones which retain their shape and speed after colliding with each other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which are widely used in many branches of physics and engineering. These equations are nonlinear long waves and mathematically represented by partial differential equations (PDEs). For solving the KdV and KdV-type equations, several nume
APA, Harvard, Vancouver, ISO, and other styles
3

Kitsos, Constantinos. "Synthèse des observateurs grand gain pour des systèmes d' EDP." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT031.

Full text
Abstract:
Cette thèse introduit quelques extensions non-triviales de la synthèse classique des observateurs grand gain pour des systèmes nonlinéaires de dimension finie à quelques classes de systèmes de dimension infinie, ayant la forme de systèmes triangulaires décrites par des équations différentielles aux dérivées partielles (EDP) couplées, où une seule coordonnée de l' état dans tout le domaine spatial est considérée comme la sortie du système. Pour aborder ce problème, des synthèses directes et indirectes d' observateurs sont proposées, en fonction d' une propriété de l' opérateur différentiel, ass
APA, Harvard, Vancouver, ISO, and other styles
4

Bárcena, Petisco Jon Asier. "Résultats sur la contrôlabilité à zéro de quelques systèmes paraboliques et dispersifs." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS010.

Full text
Abstract:
Dans ce mémoire on étudie, en adaptant les techniques de Fursikov-Imanuvilov, la contrôlabilité à zéro par l'intermédiaire de contrôles localisés à l'intérieur de quelques systèmes paraboliques et dispersifs. Plus précisément, dans le Chapitre 2 on démontre que, à l'aide d'une hypothèse géométrique, on peut contrôler à zéro un système pénalisé de Stokes dans un domaine Ω ⊂ ℝ² à l'aide d'une force scalaire et avec le coût du contrôle uniforme par rapport au paramètre qui tend vers zéro. Dans le Chapitre 3 on étudie le coût du contrôle d'un système de Stokes avec des conditions aux limites de no
APA, Harvard, Vancouver, ISO, and other styles
5

Moreno, Claudia. "Control of partial differential equations systems of dispersive type." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASV031.

Full text
Abstract:
Il existe peu de résultats dans la littérature sur la contrôlabilité du système d'équations aux dérivées partielles. Dans cette thèse, nous considérons l'étude des propriétés de contrôle pour trois systèmes couplés d'équations aux dérivées partielles de type dispersif et un problème inverse de récupération d’un coefficient. Le premier système est formé par N équations de Korteweg-de Vries sur un réseau en forme d'étoile. Pour ce système, nous étudierons la contrôlabilité exacte avec N contrôles placés aux extrémités du réseau. Le deuxième système couple trois équations de Korteweg-de Vries. Ce
APA, Harvard, Vancouver, ISO, and other styles
6

Marx, Swann. "Méthodes de stabilisation de systèmes non-linéaires avec des mesures partielles et des entrées contraintes." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT040/document.

Full text
Abstract:
Cette thèse a pour sujet la stabilisation de systèmes non-linéaires avec des mesures partielles et des entrées contraintes. Les deux premiers chapitres traitent du problème des entrées saturées dans le contexte des systèmes de dimension infinie pour des équations nonlinéaires abstraites et une équation aux dérivées partielles nonlinéaire particulière, l'équation de Korteweg-de Vries. Les outils mathématiques utilisés pour obtenir des résultats Le troisième chapitre propose une méthode de synthèse de retour de sortie pour deux équations de Korteweg-de Vries. Le quatrième chapitre concerne la sy
APA, Harvard, Vancouver, ISO, and other styles
7

Capistrano, Filho Roberto De Almeida. "Contrôle d'équations dispersives pour les ondes de surface." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0031/document.

Full text
Abstract:
Dans cette thèse, nous prouvons des résultats concernant le contrôle et la stabilisation d'équations dispersives étudiées sur un intervalle borné. Pour commencer, nous étudions la stabilisation interne du système de Gear-Grimshaw, qui est un système de deux équations de Korteweg-de-Vries (KdV) couplées. Nous obtenons une décroissance exponentielle de l'énergie totale associée au modèle en introduisant une fonction de Lyapunov convenable. Nous prouvons aussi des résultats de contrôlabilité à zéro et exacte pour l'équation de Korteweg-de Vries avec un contrôle distribué à support dans un sous-in
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Korteweg-de Vries systems"

1

Jürgen, Pöschel, ed. KdV & KAM. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kappeler, Thomas. KdV & KAM. Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dzhamay, Anton, Christopher W. Curtis, Willy A. Hereman, and B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hersh, Reuben. Peter Lax, mathematician: An illustrated memoir. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mann, Peter. Near-Integrable Systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0024.

Full text
Abstract:
This chapter extends the now familiar Lagrangian formulation to a field theory and covers elementary material in this new setting. The motion of systems with a very large number of degrees of freedom makes it necessary to specify an almost infinite number of discrete coordinates. It is possible to simplify the situation by taking the continuum limit, which replaces the individual coordinates with a continuous function that describes a displacement field, which assigns a displacement vector to each position the system could occupy relative to an equilibrium configuration. The field thus takes a
APA, Harvard, Vancouver, ISO, and other styles
6

Kappeler, Thomas, and Jürgen Pöschel. KdV & KAM (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics). Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Korteweg-de Vries systems"

1

Grimshaw, R. "Coupled Korteweg–de Vries Equations." In Understanding Complex Systems. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34070-3_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaya, Doğan. "Korteweg–de Vries Equation (KdV) and Modified Korteweg–de Vries Equations (mKdV), Semi-analytical Methods for Solving the." In Mathematics of Complexity and Dynamical Systems. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaya, Doğan. "Korteweg–de Vries Equation (KdV) and Modified Korteweg–de Vries Equations (mKdV), Semi-analytical Methods for Solving the." In Encyclopedia of Complexity and Systems Science. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaya, Doğan. "Korteweg-de Vries Equation (KdV) and Modified Korteweg-de Vries Equations (mKdV), Semi-analytical Methods for Solving the." In Encyclopedia of Complexity and Systems Science. Springer New York, 2014. http://dx.doi.org/10.1007/978-3-642-27737-5_305-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Debnath, Lokenath. "Water Waves and the Korteweg–de Vries Equation." In Mathematics of Complexity and Dynamical Systems. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Debnath, Lokenath. "Water Waves and the Korteweg–de Vries Equation." In Encyclopedia of Complexity and Systems Science. Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Bing-Yu. "Boundary Stabilization of the Korteweg-De Vries Equation." In Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena. Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8530-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

van Gils, Stephan A., and Edy Soewono. "Modulated waves in a perturbed Korteweg-de Vries equation." In Nonlinear Dynamical Systems and Chaos. Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-7518-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Debnath, Lokenath. "Water Waves and the Korteweg and de Vries Equation." In Encyclopedia of Complexity and Systems Science. Springer New York, 2014. http://dx.doi.org/10.1007/978-3-642-27737-5_586-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rozmej, Piotr, and Anna Karczewska. "Adiabatic Invariants of Second Order Korteweg-de Vries Type Equation." In Understanding Complex Systems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66766-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Korteweg-de Vries systems"

1

Salem, Ali, Lotfi Beji, Samir Otmane, and Azgal Abichou. "Exact boundary controllability for Korteweg-de Vries equation." In INTELLIGENT SYSTEMS AND AUTOMATION: 2nd Mediterranean Conference on Intelligent Systems and Automation (CISA’09). AIP, 2009. http://dx.doi.org/10.1063/1.3106478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shuxia Tang and Miroslav Krstic. "Stabilization of linearized Korteweg-de Vries systems with anti-diffusion." In 2013 American Control Conference (ACC). IEEE, 2013. http://dx.doi.org/10.1109/acc.2013.6580341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tang, Shuxia, and Miroslav Krstic. "Stabilization of linearized Korteweg-de Vries systems with anti-diffusion by boundary feedback with non-collocated observation." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7171020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Qu, Yan, Zhijun Song, Bin Teng, and Yunxiang You. "Dynamic Response of SPAR in Internal Solitary Waves." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-49413.

Full text
Abstract:
Internal solitary wave is considered as a potential hazard environmental condition to the floating structures in South China Sea. This paper presents results of the dynamic response analysis of a SPAR in internal solitary waves (ISW). Mathematical model of the ISW is selected to simulate the current process induced by the ISW. The result shows that the Korteweg–de Vries (KdV) gives rational result compared with the Modified Korteweg–de Vries (MKdV) equation. Dynamic motion of SPAR were estimated by using the current profile derived from KDV theory, load determined by Morrison equation and the
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Lu, Dong-Xia Zhao, and Lin-Hong Yao. "Exponential stability for linearized Korteweg-de Vries-ODE system." In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kurup, Nishu V., Shan Shi, Zhongmin Shi, Wenju Miao, and Lei Jiang. "Study of Nonlinear Internal Waves and Impact on Offshore Drilling Units." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-50304.

Full text
Abstract:
Internal waves near the ocean surface have been observed in many parts of the world including the Andaman Sea, Sulu Sea and South China Sea among others. The factors that cause and propagate these large amplitude waves include bathymetry, density stratification and ocean currents. Although their effects on floating drilling platforms and its riser systems have not been extensively studied, these waves have in the past seriously disrupted offshore exploration and drilling operations. In particular a drill pipe was ripped from the BOP and lost during drilling operations in the Andaman sea. Drill
APA, Harvard, Vancouver, ISO, and other styles
7

Motsepa, Tanki, and Chaudry Masood Khalique. "Travelling wave solutions of a coupled Korteweg-de Vries-Burgers system." In PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4940275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khalique, Chaudry Masood. "Solutions of a Generalized Complexly Coupled Korteweg-de Vries System Using Simplest Equation Method." In 2014 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2014. http://dx.doi.org/10.1109/csci.2014.123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!