Academic literature on the topic 'Kottwitz'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kottwitz.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kottwitz"

1

Shen, Xu. "ON THE COHOMOLOGY OF SOME SIMPLE SHIMURA VARIETIES WITH BAD REDUCTION." Journal of the Institute of Mathematics of Jussieu 18, no. 1 (2016): 1–24. http://dx.doi.org/10.1017/s1474748016000372.

Full text
Abstract:
We determine the Galois representations inside the$\ell$-adic cohomology of some quaternionic and related unitary Shimura varieties at ramified places. The main results generalize the previous works of Reimann and Kottwitz in this setting to arbitrary levels at$p$, and confirm the expected description of the cohomology due to Langlands and Kottwitz.
APA, Harvard, Vancouver, ISO, and other styles
2

Casselman, Bill. "Verifying Kottwitz’ conjecture by computer." Representation Theory of the American Mathematical Society 4, no. 3 (2000): 32–45. http://dx.doi.org/10.1090/s1088-4165-00-00052-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tuan, Ngo Dac. "Comptage des -chtoucas: la partie elliptique." Compositio Mathematica 149, no. 12 (2013): 2169–83. http://dx.doi.org/10.1112/s0010437x13007100.

Full text
Abstract:
AbstractWe extend our previous work in collaboration with Ngô Bao Châu and give a fixed point formula for the elliptic part of moduli spaces of$G$-shtukas with arbitrary modifications. Our formula is similar to the fixed point formula of Kottwitz for certain Shimura varieties. Our method is inspired by that of Kottwitz and simpler than that of Lafforgue for the fixed point formula of the moduli space of Drinfeld$\text{GL} (r)$-shtukas.
APA, Harvard, Vancouver, ISO, and other styles
4

Douai, Jean-Claude. "Prolongement d'une suite exacte de Kottwitz." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, no. 10 (1997): 1059–63. http://dx.doi.org/10.1016/s0764-4442(97)88705-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adrian, Moshe. "A remark on the Kottwitz homomorphism." manuscripta mathematica 155, no. 1-2 (2017): 1–14. http://dx.doi.org/10.1007/s00229-017-0943-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Morel, Sophie. "Cohomologie d’intersection des variétés modulaires de Siegel, suite." Compositio Mathematica 147, no. 6 (2011): 1671–740. http://dx.doi.org/10.1112/s0010437x11005409.

Full text
Abstract:
AbstractIn this work, we study the intersection cohomology of Siegel modular varieties. The goal is to express the trace of a Hecke operator composed with a power of the Frobenius endomorphism (at a good place) on this cohomology in terms of the geometric side of Arthur’s invariant trace formula for well-chosen test functions. Our main tools are the results of Kottwitz about the contribution of the cohomology with compact support and about the stabilization of the trace formula, Arthur’s L2 trace formula and the fixed point formula of Morel [Complexes pondérés sur les compactifications de Bail
APA, Harvard, Vancouver, ISO, and other styles
7

Gashi, Qëndrim R. "On a conjecture of Kottwitz and Rapoport." Annales scientifiques de l'École normale supérieure 43, no. 6 (2010): 1017–38. http://dx.doi.org/10.24033/asens.2138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stroh, Benoît. "Sur une conjecture de Kottwitz au bord." Annales scientifiques de l'École normale supérieure 45, no. 1 (2012): 143–65. http://dx.doi.org/10.24033/asens.2162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cochet, Charles. "Effective Reduction of Goresky-Kottwitz-MacPherson Graphs." Experimental Mathematics 14, no. 2 (2005): 133–44. http://dx.doi.org/10.1080/10586458.2005.10128921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Görtz, Ulrich, and Maarten Hoeve. "Ekedahl–Oort strata and Kottwitz–Rapoport strata." Journal of Algebra 351, no. 1 (2012): 160–74. http://dx.doi.org/10.1016/j.jalgebra.2011.10.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Kottwitz"

1

Nguyen, Kieu hieu. "Espaces de Rapoport-Zink et conjecture de Kottwitz." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD012.

Full text
Abstract:
La conjecture de Kottwitz décrit la cohomologie des espaces de Rapoport-Zink basiques à l'aide des correspondances de Langlands locales. Dans un premier temps, par voie globale via l'étude de la géométrie de certaines variétés de Shimura de type Kottwitz, on prouve cette conjecture pour des espaces de Rapoport-Zink de type PEL unitaires non ramifiés simples basiques de signature (1,n−1). Dans la deuxième partie de cette thèse, via l'étude des modifications de fibrés vectoriels sur la courbe de Fargues-Fontaine, on prouve une formule géométrique reliant les tours de Lubin-Tate avec les espaces
APA, Harvard, Vancouver, ISO, and other styles
2

Ballmann, Joachim. "Berechnung der Kottwitz-Shelstad-Transferfaktoren für unverzweigte Tori in nicht zusammenhängenden reduktiven Gruppen." [S.l. : s.n.], 2001. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB9685560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cochet, Charles. "Réduction des graphes de Goresky-Kottwitz-MacPherson ; nombres de Kostka et coefficients de Littlewood-Richardson." Phd thesis, Université Paris-Diderot - Paris VII, 2003. http://tel.archives-ouvertes.fr/tel-00005168.

Full text
Abstract:
Ce travail concerne la réalisation concrète en calcul formel d'algorithmes abstraits issus de publications récentes. Il comporte deux parties distinctes mais cependant issues du m(ê)me monde : l'action d'un groupe de Lie, sur une variété ou un espace vectoriel. La première partie traite de l'implémentation de la réduction d'un graphe de Goresky-Kottwitz-MacPherson. Ce graphe est l'analogue combinatoire d'une variété symplectique compacte connexe soumise à une action hamiltonienne d'un tore compact. La seconde partie est consacrée à l'implémentation du calcul de deux coefficients intervenant lo
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Jinbo. "Autour de la conjecture de Zilber-Pink pour les Variétés de Shimura." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS208/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à l'étude de l'arithmétique et de la géométrie des variétés de Shimura. Cette thèse s'est essentiellement organisée autour de trois volets. Dans la première partie, on étudie certaines applications de la théorie des modèles en théorie des nombres. En 2014, Pila et Tsimerman ont donné une preuve de la conjecture d'Ax-Schanuel pour la fonction j et, avec Mok, ont récemment annoncé une preuve de sa généralisation à toute variété de Shimura. Nous nous référons à cette généralisation comme à la conjecture d'Ax-Schanuel hyperbolique. Dans ce projet, nous cherc
APA, Harvard, Vancouver, ISO, and other styles
5

Hartwig, Philipp [Verfasser], Ulrich [Akademischer Betreuer] Görtz, and Michael [Akademischer Betreuer] Rapoport. "Kottwitz-Rapoport and p-rank strata in the reduction of Shimura varieties of PEL type / Philipp Hartwig. Gutachter: Michael Rapoport. Betreuer: Ulrich Görtz." Duisburg, 2012. http://d-nb.info/1026012287/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kottwitz, Jan Niklas [Verfasser]. "Molekulare Charakterisierung des PINK1- und des Parkin-assoziierten Parkinson-Syndroms in einem humanen Zellmodell und Genetische Assoziationsstudie zum PARK16-Locus / Jan Niklas Kottwitz." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1052130380/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kottwitz, Karin [Verfasser]. "Untersuchungen zum Chromstoffwechsel in der Ratte : Synthese, Absorption und Retention von 51Chromverbindungen / vorgelegt von Karin Kottwitz." 2008. http://d-nb.info/99201347X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ballmann, Joachim [Verfasser]. "Berechnung der Kottwitz-Shelstad-Transferfaktoren für unverzweigte Tori in nicht zusammenhängenden reduktiven Gruppen / vorgelegt von Joachim Ballmann." 2001. http://d-nb.info/964076896/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kottwitz, Denise [Verfasser]. "Heterologe Expression und strukturelle Charakterisierung der intrazellulären Domäne der δ-Untereinheit [Delta-Untereinheit] des nikotinischen Acetylcholinrezeptors / vorgelegt von Denise Kottwitz". 2005. http://d-nb.info/976735326/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Kottwitz"

1

Hans Ernst von Kottwitz: Studien zur Erweckungsbewegung des frühen 19. Jahrhunderts in Schlesien und Berlin. Vandenhoeck & Ruprecht, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Berathung der Armuth": Das soziale Wirken des Barons Hans Ernst von Kottwitz zwischen Aufklärung und Erweckungsbewegung in Berlin und Schlesien. P. Lang, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kottwitz"

1

Meyer, D. "Kottwitz, Hans Ernst Freiherr von." In Kirchenrechtsquellen - Kreuz. De Gruyter, 1990. http://dx.doi.org/10.1515/9783110880946-098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Introduction to the Langlands–Kottwitz method." In Shimura Varieties. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108649711.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Local Shimura Varieties: Minicourse Given by Peter Scholze." In Arithmetic and Geometry, edited by Gisbert Wüstholz and Clemens Fuchs. Princeton University Press, 2019. http://dx.doi.org/10.23943/princeton/9780691193779.003.0002.

Full text
Abstract:
This chapter discusses Peter Scholze's minicourse on local Shimura varieties. The goal of these lectures is to describe a program to construct local Langlands correspondence. The construction is based on cohomology of so-called local Shimura varieties and generalizations thereof. It was predicted by Robert Kottwitz that for each local Shimura datum, there exists a so-called local Shimura variety, which is a pro-object in the category of rigid analytic spaces. Thus, local Shimura varieties are determined by a purely group-theoretic datum without any underlying deformation problem. This is now an unpublished theorem, by the work of Fargues, Kedlaya–Liu, and Caraiani–Scholze. The chapter then explains the approach to local Langlands correspondence via cohomology of Lubin–Tate spaces as well as Rapoport–Zink spaces. It also introduces a formal deformation problem and describes properties of the corresponding universal deformation formal scheme.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!