To see the other types of publications on this topic, follow the link: Kratony.

Dissertations / Theses on the topic 'Kratony'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Kratony.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Houben, Vincent J. H. "Kraton and Kumpeni : Surakarta and Yogyakarta, 1830-1870 /." Leiden : KITVL, 1994. http://catalogue.bnf.fr/ark:/12148/cb357371314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nagel, Rudolf. "Eine Milliarde Jahre geologischer Entwicklung am NW-Rand des Kalahari-Kratons." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=963612484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brakel-Papenhuijzen, Clara. "The sacred bedhaya dances of the kratons of Surakarta and Yogyakarta." Voorburg : Departement van Onderwijs en Wetenschappen, 1988. http://bibpurl.oclc.org/web/23835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Väisänen, M. (Mikko). "Vuotoriskipaikkojen kartoitus Kratonin Oulun tehtaalla sekä vuodonestotarvikkeiden määrittely kriittisille paikoille." Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201710042936.

Full text
Abstract:
Työn tavoitteena on kartoittaa Kratonin Oulun tehtaan vuotoriskipaikkoja lastaus- ja purkupaikkojen sekä kriittisten sisätilojen osalta. Työ suoritettiin keväällä 2017 ja tehdas alueella järjestettiin kaksi tehdaskierrosta, joissa tutustuttiin kohteeseen ja tarkasteltiin lastaus- ja purkupaikkojen järjestelyjä. Tehdaskierroksilla käytiin läpi myös tämän hetkistä varautumista mahdollisiin vuotoihin sekä Kratonin vuodonestotarvikkeita. Kartoituksen jälkeen selvitettiin lain sekä standardien vaatimukset kyseisiltä paikoilta. Lainsäädännön osalta keskityttiin työn kannalta keskeisimpiin lakeihin sekä standardeihin. Turvallisuus- ja kemikaalivirasto on tehnyt Vaarallisten kemikaalien varastointi -oppaan, jonka avulla voitiin selvittää keskeisimmät standardit. Laki antaa ennen kaikkea sisätilojen osalta tarkkoja vaatimuksia vuodon estämiseksi, mutta varsinaiset lastaus- ja purkupaikat määritellään laissa avoimesti. Laissa kuitenkin vaaditaan, ettei sadevesien mukana saa päästä mitään haitallisia aineita ympäristöön. Kartoituksen jälkeen mietittiin mahdollisia vuodonestotarvikkeita Kratonin tehdasalueelle edellä mainittuihin paikkoihin. Erityisesti difenyyliöljyn pääsy öljynerotuskaivolle ja siitä eteenpäin tulisi estää johtuen sen haitallisuudesta. Tehdaskierrosten aikana Kratonin työntekijöitä haastateltiin eri vuodonestotarvikkeiden järkevyydestä ja heitä pyydettiin antamaan omia ehdotuksia vuodonestotarvikkeiden osalta. Haastatteluissa korostui mahdollisen vuodon sattuessa vaikeat olosuhteet, joissa vuodonestotarvikkeita tulisi käyttää sekä vuotavan aineen vaaralliset olosuhteet. Tämän ja Kratonin oman vuodontorjuntalaitteiston pohjalta yhdeksi mahdolliseksi vaihtoehdoksi esitetään nopean havainnoinnin ja nopean toiminnan tehostamista vuodon minimoimiseksi. Näillä keinoilla mahdollisen vuodon taloudelliset tappiot, mitä tulee menetetystä tuotteena jäävät mahdollisimman pieniksi. Samalla kuitenkin taataan turvallinen ympäristö työntekijöille
Purpose of this work is to make a plot concerning leakage in loading- and unloading places and the most critical indoor areas in Kraton Oulu. Survey was carried out in spring 2017. During that time, there was two factory visits where the factory and the main points regarding this Thesis was introduced. Also, the current plan for leakage prevention was introduced and the actual hardware materials. Law and different standard requirements was also take in account from those main areas. The Finnish Safety and Chemical Agency (Tukes) have done guide book Vaarallisten kemikaalien varastointi which allows solve the main standards. Law gives quite specific demands what comes to leakage prevention in indoor areas but the actual loading- and unloading places are determinate widely. Main point is that any hazardous chemicals are not allowed to go in or through the storm drain systems. After the visits, new leakage prevention materials and methods was think through. Particularly diphenyl oil and its leakage prevention was taken in account because it is very harmful substance when it goes into oil separation well or even through it. During those two visits in Kraton some of the employees were interview regarding the need and functionality of different prevention methods. During those interviews employees highlighted the difficult circumstances for leakage prevention if something was leaking from the actual process. Therefore, the most reasonable way to prevent leakages and prevent harmful substances like diphenyl oil getting into oil separation well is fast reaction time. This way economical losses can be kept minimum and at the same time worker’s safety is guaranteed
APA, Harvard, Vancouver, ISO, and other styles
5

Loose, Denny [Verfasser]. "Metamorphe Entwicklung des nördlichen und östlichen Randes des Kongo-Kratons in paläoproterozoischer und panafrikanischer Zeit / Denny Loose." Kiel : Universitätsbibliothek Kiel, 2008. http://d-nb.info/1019543604/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kratky, Alexander [Verfasser]. "Umformen von partiell mit Laserstrahlung behandeltem Halbzeug / Alexander Kratky." Aachen : Shaker, 2009. http://d-nb.info/1159836582/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Deters-Itzelsberger, Peter. "Gesteinseinschlüsse unterschiedlicher Zusammensetzung in den Peninsular Gneisen Südindiens - Isotopengeochemische Untersuchungen zu ihrer Stellung im Geosystem Dharwar Kraton." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-18628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kilanowski, Philip D. "On the Kratky-Porod model for semi-flexible polymers in an external force field." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275421702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krato, Theresa [Verfasser], and Jens [Akademischer Betreuer] Wünsche. "Identifizierung und Quantifizierung von Trockenstressreaktionen an ausgewählten Zierpflanzenkulturen / Theresa Krato. Betreuer: Jens Wünsche." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2013. http://d-nb.info/1045682551/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kratky, Joseph J. "SERIES EXPANSION FOR SEMI-SPDES WITH REMARKS ON HYPERBOLIC SPDES ON THE LATTICE." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310614464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kratky, Katharina Verfasser], Gerd [Gutachter] [Mannhaupt, Katrin Gutachter] Dedering, and Hans [Gutachter] [Merkens. "Die schulische Auseinandersetzung mit externer Evaluation im Kontext der Implementierung neuer Steuerungsinstrumente / Katharina Kratky ; Gutachter: Gerd Mannhaupt, Katrin Dedering, Hans Merkens." Erfurt : Universität Erfurt, 2015. http://d-nb.info/121597731X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brommer, Axel. "Strukturelle Entwicklung und Petrogenese des nördlichen Kristallingürtels der Shackleton Range, Antarktis : proterozoische und Ross-orogene Krustendynamik am Rand des Ostantarktischen Kratons = Structural evolution and petrogenesis of the northern crystalline belt of the Shackleton Range, Antarctis /." Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung, 1998. http://www.gbv.de/dms/bs/toc/252821556.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Krato, Christoph [Verfasser], and Roland [Akademischer Betreuer] Gerhards. "Consequences for weed management in crop rotations by introducing imidazolinone-tolerant oilseed rape varieties / Christoph Krato. Betreuer: Roland Gerhards." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2013. http://d-nb.info/1029506744/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gärtner, Andreas. "Geologic evolution of the Adrar Souttouf Massif (Moroccan Sahara) and its significance for continental-scaled plate reconstructions since the Mid Neoproterozoic." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234103.

Full text
Abstract:
Located in the south of the Moroccan Sahara, the Adrar Souttouf Massif is the northern continuation of the Mauritanides at the western margin of the West African Craton. The massif itself exhibits a complex polyphase geologic history and contains four geologically different, SSW-NNE trending main units named from west to east: Oued Togba, Sebkha Gezmayet, Dayet Lawda, Sebkha Matallah. They are thrusted over each other in thin-skinned nappes with local windows of the discordantly overlain Archaean Reguibat basement. The eastern margin of the massif is bordered by the Tiris and Tasiast-Tijirit areas of the Reguibat Shield as well as its (par-) autochthonous Palaeozoic cover sequence, termed Dhloat Ensour unit. More than 5.500 U-Th-Pb age determinations and over 1.000 Hf isotopic measurements on single zircon grains from igneous, metamorphic, and sedimentary rocks of all the massifs units and its vicinity have yet been obtained. Most of the zircons were studied with respect to their morphological features. This method improves the accuracy of provenance studies by detecting varying zircon morphologies in space and time. These data are accompanied by U-Th-Pb age determinations on apatite as well as rutile. Together, they allow proposing a model of the geologic evolution of this poorly mapped area for the last 635 Ma. A combination of the obtained data with extensive zircon age databases of the surrounding cratons and terranes facilitates continental-scaled palaeogeographic reconstructions. Regarding the geologic evolution of the Adrar Souttouf Massif, the assembly of the first units began prior to 635 Ma. Although containing all the major zircon age and Hf-isotope populations of the West African Craton as well as some Mesoproterozoic grains, the Sebkha Gezmayet unit lies to the west of the Dayet Lawda unit of oceanic island arc composition. Hence, the Sebkha Gezmayet unit must have been rifted away from the craton prior to the formation of the oceanic unit within the West African Neoproterozoic Ocean at about 635 Ma. Recently published Hf and zircon age data of this unit suggest that the island arc was derived from a juvenile mantle source. Subsequently, the accretion of precursors of the Oued Togba and Sebkha Gezmayet units as well as a partial obduction of the oceanic Dayet Lawda unit and the Neoproterozoic sediments of a foreland basin (Sebkha Matallah unit) onto the Reguibat Shield took place. Peak metamorphism in the obducted oceanic rocks was reached at about 605 Ma. Magmatism in the western units between 610 and 570 Ma suggests on-going tectonic activity. The Early and Middle Cambrian is characterised by the erosion of the Ediacaran orogen and deposition of thick sedimentary sequences at the Sebkha Matallah unit, which acted as foreland basin. These sediments show a mostly West African zircon record with only some Mesoproterozoic grains provided by the westernmost parts of the massif. Initial rifting of the Oued Togba and Sebkha Gezmayet units from the remaining areas presumably occurred during the Late Cambrian. Coeval granitoid intrusions occurred on both sides of the rift. The two rifted units were likely involved to the polyphased Appalachian orogenies, which is emphasised by Devonian magmatism. Thus, and with respect to the isotopic data, the Oued Togba unit is interpreted to be of Avalonia affinity, while the Sebkha Gezmayet unit can likely be linked to Meguma. The units which remained at the West African Craton underwent intense sediment recycling during the entire Ordovician to Devonian times. Final accretion of all units and formation of the current massif was achieved during the Variscan-Alleghanian orogeny. This was accompanied by magmatism in the Sebkha Gezmayet unit and intense metamorphism of the Reguibat basement, whose zircons often show lower discordia intercepts of Carboniferous or Permian age. The post-Variscan period is characterised by erosion of the orogen and subjacent alternating cycles of sedimentation and deflation. The Adrar Souttouf Massifs importance for palaeogeographic reconstructions is given by the striking differences in the zircon age and Hf-isotope record of its westernmost Oued Togba unit and the remaining area. The results obtained from the Oued Togba unit resemble the published data of the Avalonia type terranes including prominent Mesoproterozoic, Ediacaran-Early Cambrian, as well as Early Devonian age populations. Many Mesoproterozoic zircons, which are exotic for the West African Craton prior to 635 Ma, form a ca. 1.20 to 1.25 Ga age peak that is an excellent tracer for detrital provenance studies and source craton identification of the sedimentary rocks. This is also valid for some sedimentary samples that do not show ages younger than 700 Ma, but large quantities of Mesoproterozoic zircon. These rocks can be correlated to similar sediments in Mauritania and W-Avalonia and are thought to be of pre-pan-African", i.e. pre-Ediacaran or even pre-Cryogenian age. They may give direct insights to the source area in Early to Mid Neoproterozoic times. Accordingly, comparison with published data of Amazonia and Baltica, allows setting up new hypotheses for the pre-Ediacaran history of the Avalonian type terranes. Lacking of magmatism in Amazonia between ca. 1200 and ca. 1300 Ma favours Baltica as source craton for the Avalonian terranes and requires a new point of view for the Neoproterozoic palaeogeography.
APA, Harvard, Vancouver, ISO, and other styles
15

Kratky, Nicole [Verfasser], Joachim [Akademischer Betreuer] Vogt, and Michela [Akademischer Betreuer] Schröder-Abé. "Familienrechtliche Verfahren zum Kinderschutz: Eine Gerichtsaktenanalyse zur Rolle von elterlicher psychischer Gesundheit, Alleinerziehung und des Kindeswillens im Verfahrensverlauf / Nicole Kratky ; Joachim Vogt, Michela Schröder-Abé." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/1219656100/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kratky, Nicole Verfasser], Joachim [Akademischer Betreuer] [Vogt, and Michela [Akademischer Betreuer] Schröder-Abé. "Familienrechtliche Verfahren zum Kinderschutz: Eine Gerichtsaktenanalyse zur Rolle von elterlicher psychischer Gesundheit, Alleinerziehung und des Kindeswillens im Verfahrensverlauf / Nicole Kratky ; Joachim Vogt, Michela Schröder-Abé." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-140094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Avverahalli, Ravi Darshan. "Identifying and Prioritizing Critical Information in Military IoT: Video Game Demonstration." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104070.

Full text
Abstract:
Current communication and network systems are not built for delay-sensitive applications. The most obvious fact is that the communication capacity is only achievable in theory with infinitely long codes, which means infinitely long delays. One remedy for this is to use shorter codes. Conceptually, there is a deeper reason for the difficulties in such solutions: in Shannon's original 1948 paper, he started out by stating that the "semantic aspects" of information is "irrelevant" to communications. Hence, in Shannon's communication system, as well as every network built after him, we put all information into a uniform bit-stream, regardless what meanings they carry, and we transmit these bits over the network as a single type of commodity. Consequently, the network system can only provide a uniform level of error protection and latency control to all these bits. We argue that such a single measure of latency, or Age of Information (AoI), is insufficient for military Internet of Things (IoT) applications that inherently connect the communication network witha cyber-physical system. For example, a self-driving military vehicle might send to the controller a front-view image. Clearly, not everything in the image is equally important for the purpose of steering the vehicle: an approaching vehicle is a much more urgent piece of information than a tree in the background. Similar examples can be seen for other military IoT devices, such as drones and sensors. In this work, we present a new approach that inherently extarcts the most critical information in a Military Battlefield IoT scenatio by using a metric - called H-Score. This ensures the neural network to only concentrate on the most important information and ignore all background informaiton. We then carry out extensive evaluation of this a by testing it against various inputs, ranging from a vector of numbers to a 1000x1000 pixel image. Next, we introduce the concept of Manual Marginalization, which helps us to make independent decisions for each object in the image. We also develop a video game that captures the essence of a military battlefield scenario and test our developed algorithm here. Finally, we apply our approach on a simple Atari Space Invaders video game to shoot down enemies before they fire at us.
Master of Science
The IoT is transforming military and civilian environments into truly integrated cyberphysical systems (CPS), in which the dynamic physical world is tightly embedded with communication capabilities. This CPS nature of the military IoT will enable it to integrate a plethora of devices, ranging from small sensors to autonomous aerial, ground, and naval vehicles. This results in huge amount of information being transferred between the devices. However, not all the information is equally important. Broadly we can categorize information into two types: Critical and Non-Critical. For example in a military battlefield, the information about enemies is critical and information abouut the background trees is not so important. Therefore, it is essential to isolate the critical information from non-critical informaiton. This is the focus of our work. We use neural networks and some domain knowledge about the enemies to extract the critical information and use the extracted information to take control decisions. We then evalue the performance of this approach by testing it against various kinds of synthetic data sets. Finally we use an Atari Space Invaders video game to demonstrate how the extracted information can be used to make crucial decisions about enemies.
APA, Harvard, Vancouver, ISO, and other styles
18

Samara, Marko. "Limit Theorems for the Rotational Isomeric State Model." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322578686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Brommer, Axel. "Strukturelle Entwicklung und Petrogenese des nördlichen Kristallingürtels der Shackleton Range, Antarktis: Proterozoische und Ross-orogene Krustendynamik am Rand des Ostantarktischen Kratons = Structural evolution and petrogenesis of the northern crystalline belt of the Shackleton Range, Antarctica: Proterozoic and Ross-orogenic crustal dynamics along the margin of the East Antarctic Craton /." Bremerhaven : Alfred-Wegener-Inst. für Polar- und Meeresforschung, 1998. http://www.gbv.de/dms/bs/toc/252821556.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pakleza, Christophe. "Méthodologies du repliement de l'ADN à différentes échelles : modélisation moléculaire des épingles à cheveux à partir de la théorie de l'élasticité et de contraintes RMN : analyse et mesure de la courbure et de la flexibilité à partir de microscopies." Paris 6, 2002. http://www.theses.fr/2002PA066283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Simonato, Pierluigi. "Evaluating and expanding knowledge and awareness of health professionals on the consumption and adverse consequences of Novel Psychoactive Substances (NPS) through innovative information technologic tools." Thesis, University of Hertfordshire, 2015. http://hdl.handle.net/2299/16557.

Full text
Abstract:
Background: The rapid diffusion of Novel Psychoactive Substances (NPS) constitutes an important challenge in terms of public health and a novelty in clinical settings, where these compounds may lead to erratic symptoms, unascertained effects and multi-intoxication scenarios, especially in emergency situations. The number of NPS available on the illicit drug market is astonishing: official reports suggest the appearance of a new drug every week. NPS may be enlisted in many different families such as synthetic phenethylamines, tryptamines, cathinones, piperazines, ketamine-like compounds, cannabimimetics and other plant-derived, medical products and derivatives. Therefore, healthcare services and professionals are often called to face this unknown 'galaxy' where NPS users seem to perceive traditional services 'unfitting' for their needs, requiring an attention which is quite different from known classic drug abusers. In this context, the Recreational Drugs European Network (ReDNet), a research project funded the European Commission and led by the University of Hertfordshire, aimed to explore the NPS galaxy and develop information tools for vulnerable individuals and professionals working with them. This initiative reported specific Technical Folders on new drugs and disseminated the collected information through innovative communication technologies (e.g. multimedia tools, social networking and mobile phone services) internationally. Aim and objectives: The aim of this work is to evaluate and contribute to expand the knowledge of health professionals on NPS. The key objectives are: 1) to assess the level of knowledge on NPS amongst a sample of Italian healthcare professionals; 2) to evaluate the effectiveness of dissemination tools developed by ReDNet, including an SMS-Email/mobile service (SMAIL); 3) to understand the clinical impact of NPS by providing four Technical Folders and collecting two clinical cases on NPS. Methodology: According to the objectives, the methodological approach has been articulated in the following three phases. Phase 1: investigating knowledge and preferred channels of information via an online survey among health professionals in Italy. This first Italian study on NPS awareness had been online from February to July 2011, recruiting participants from Departments of Addiction, Psychiatry and other services. Phase 2: evaluating the ReDNet initiative. An evaluation questionnaire was designed and disseminated online to assess the various resources provided by ReDNet project; it had been online from April to July 2013, targeting professionals registered to ReDNet services. This phase also investigated the SMAIL service, a mobile application that was the latest technological tool developed by ReDNet team. Phase 3: promoting evidence based work in clinical practice through the preparation of four Technical Folders and two case reports. Technical Folders followed the methodology optimised during the ReDNet experience, organising NPS data under specific headings, measured for the need of health professionals. Case reports were collected in a Dual Diagnosis Unit in Italy ('Casa di Cura Parco dei Tigli'); assessed patients revealed for the first time the use of NPS; clinical interviews were conducted to collect a full anamnesis while for the first time psychopathological characteristics were measured in NPS abusers, using a psychometric instrument (MMPI-2). Results: In Phase 1 Italian services, in particular interviewees (n=243) from Departments of Psychiatry and Addiction, showed a strong interest for the subject but a poor understanding of NPS: 26.7% of respondents did not know if their patients ever used NPS; at the same time they considered this phenomenon as very relevant to their profession (e.g. psychomotor agitation [75.7%], errors in the assessment [75.7%], management of the clients [72%]); in addition less of a quarter of them had reliable information on new substances. Interviewees also reported the need for easily accessible channels of information to expand their expertise in the field (including emails [70%] and dedicated websites [51.9%]). The ReDNet initiative (Phase 2) reached professionals (n=270) from European countries and various other regions; they appreciated the website above all (48.5%), which provided access to other information (in form of academic papers, news, technical folders, etc.). The integration of technological-based and classic educational resources was used to self-educate professionals (52.6%) and supply information for research (33.7%) with up-to-date and 3 reliable information; in the same Phase the SMAIL service was analysed in its first 557 searches: in the pilot period 122 professionals used SMS inquiries (95%), asking information on NPS while highlighting the increasing number of NPS available on the market. Technical folders (Phase 3) described two new phenethylamines (Bromo-dragonfly and 25I-NBOMe), a novel ethno drug (Kratom) and a new synthetic cathinone (alpha-PVP) whose severe effects were also described in one of the clinical cases. The first case report (Alice) involved a clubber who used mephedrone and other NPS with a severe worsening of her psychiatric disturbances; the second one (Marvin) described a patient who was referred by a psychiatric service and revealed himself as a 'psychonaut' with an intense abuse of alpha-PVP. Conclusions: The exploration of the NPS galaxy is a new challenge for healthcare professionals. In this study, Italian services seemed to be unprepared to face the emergency and requested rapid access to reliable information; the ReDNet project provided both technology-based and traditional resources to expand knowledge on NPS, making professionals more aware of emerging issues and helping especially clinicians working in the field (e.g. via SMAIL service and Technical Folders). Overall, it can be observed that effective information services on NPS targeted at professionals initiatives should include an online interface integrating up-to-date information, describing NPS through specific Technical Folders and disseminating scientific literature; the use of technological tools, including mobile applications, is an important strategy to support health professionals in their activity. Finally, more 'visual' guidelines, possibly in the form of a 'map' of these heterogeneous compounds, could be a useful framework to describe NPS to physicians and other professionals who are often unprepared and unconfident to face such an expanding galaxy.
APA, Harvard, Vancouver, ISO, and other styles
22

Philipp, Anika-Anina Verfasser], and Hans H. [Akademischer Betreuer] [Maurer. "Studies on the phase I and II metabolism and the toxicological analysis of the alkaloids of the herbal drug of abuse Mitragyna speciosa Korth. (Kratom) using gas chromatography-mass spectrometry and liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry / Anika-Anina Philipp. Betreuer: Hans H. Maurer." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2011. http://d-nb.info/1051284848/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Boamah, Kwame. "Minerogeny of the Pan-African Volta Basin of Ghana." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-223299.

Full text
Abstract:
Within the framework of this research, the complex geological history of the Pan African-Volta basin has been systematically reconstructed. Based on a broad review of literature and new data, 5 stages of geological-tectonic development have been identified. For the first time a systematic review of the mineral potential of the Pan-African Volta Basin was executed. Known and potentially existing mineralization have been related to the geotectonic history and metallogenetic conclusions have been drawn. Based on the findings of this research, the folded thrust belt located at the eastern rim of the Volta basin has been identified as the most prospective area for the ultramafic rocks with chromite, nickel mineralization and PGEs, hydrothermal gold and banded iron formation (BIF) but this will require further work.
APA, Harvard, Vancouver, ISO, and other styles
24

Dittrich, Thomas. "Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228968.

Full text
Abstract:
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail. Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn). In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia. In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites. Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system. This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe. All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe. Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide. Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs. The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems. LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation. Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series. The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results. Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems. This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide
Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden. Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt. Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden. Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden. Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen. Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin). Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren. Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet. Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen. LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein. Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation. Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten. Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben. Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können. Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen. Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen
APA, Harvard, Vancouver, ISO, and other styles
25

Le, Treut Guillaume. "Models of chromosome architecture and connection with the regulation of genetic expression." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS411/document.

Full text
Abstract:
Plusieurs indices suggèrent que le repliement du chromosome et la régulation de l’expression génétique sont étroitement liés. Par exemple, la co-expression d’un grand nombre de gènes est favorisée par leur rapprochement dans l’espace cellulaire. En outre, le repliement du chromosome permet de faire émerger des structures fonctionnelles. Celles-ci peuvent être des amas condensés et fibrillaires, interdisant l’accès à l’ADN, ou au contraire des configurations plus ouvertes de l’ADN avec quelques amas globulaires, comme c’est le cas avec les usines de transcription. Bien que dissemblables au premier abord, de telles structures sont rendues possibles par l’existence de protéines bivalentes, capable d’apparier des régions parfois très éloignées sur la séquence d’ADN. Le système physique ainsi constitué du chromosome et de protéines bivalentes peut être très complexe. C’est pourquoi les mécanismes régissant le repliement du chromosome sont restés majoritairement incompris.Nous avons étudié des modèles d’architecture du chromosome en utilisant le formalisme de la physique statistique. Notre point de départ est la représentation du chromosome sous la forme d’un polymère rigide, pouvant interagir avec une solution de protéines liantes. Les structures résultant de ces interactions ont été caractérisées à l’équilibre thermodynamique. De plus, nous avons utilisé des simulations de dynamique Brownienne en complément des méthodes théoriques, car elles permettent de prendre en considération une plus grande complexité dans les phénomènes biologiques étudiés.Les principaux aboutissements de cette thèse ont été : (i) de fournir un modèle pour l’existence des usines de transcriptions caractérisées in vivo à l’aide de microscopie par fluorescence ; (ii) de proposer une explication physique pour une conjecture portant sur un mécanisme de régulation de la transcription impliquant la formation de boucles d’ADN en tête d’épingle sous l’effet de la protéine H-NS, qui a été émise suite à l’observation de ces boucles au microscope à force atomique ; (iii) de proposer un modèle du chromosome qui reproduise les contacts mesurés à l’aide des techniques Hi-C. Les conséquences de ces mécanismes sur la régulation de la transcription ont été systématiquement discutées
Increasing evidences suggest that chromosome folding and genetic expression are intimately connected. For example, the co-expression of a large number of genes can benefit from their spatial co-localization in the cellular space. Furthermore, functional structures can result from the particular folding of the chromosome. These can be rather compact bundle-like aggregates that prevent the access to DNA, or in contrast, open coil configurations with several (presumably) globular clusters like transcription factories. Such phenomena have in common to result from the binding of divalent proteins that can bridge regions sometimes far away on the DNA sequence. The physical system consisting of the chromosome interacting with divalent proteins can be very complex. As such, most of the mechanisms responsible for chromosome folding and for the formation of functional structures have remained elusive.Using methods from statistical physics, we investigated models of chromosome architecture. A common denominator of our approach has been to represent the chromosome as a polymer with bending rigidity and consider its interaction with a solution of DNA-binding proteins. Structures entailed by the binding of such proteins were then characterized at the thermodynamical equilibrium. Furthermore, we complemented theoretical results with Brownian dynamics simulations, allowing to reproduce more of the biological complexity.The main contributions of this thesis have been: (i) to provide a model for the existence of transcrip- tion factories characterized in vivo with fluorescence microscopy; (ii) to propose a physical basis for a conjectured regulatory mechanism of the transcription involving the formation of DNA hairpin loops by the H-NS protein as characterized with atomic-force microscopy experiments; (iii) to propose a physical model of the chromosome that reproduces contacts measured in chromosome conformation capture (CCC) experiments. Consequences on the regulation of transcription are discussed in each of these studies
APA, Harvard, Vancouver, ISO, and other styles
26

Drobe, Malte. "Neoproterozoische bis paläozoische Krustendynamik am Westrand des Río de la Plata Kratons." Doctoral thesis, 2009. http://hdl.handle.net/11858/00-1735-0000-0006-B2E9-E.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Huang, Jian-Zhi, and 黃建智. "Preparation and Physical Properties of Silica Reinforced Epoxy Composites." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/kratdy.

Full text
Abstract:
碩士
國立中興大學
化學工程學系所
106
This study employs aminoalkoxysilane (3-aminopropyltriethoxysiliane, APS) to modify epoxy resin (diglycidyl ether of bisphenol A, DGEBA) and form silica by sol-gel process simultaneously. The curing agent is ethylamine trifluoroborane, BF3•EA, that used as curing additive for the preparation of epoxy/SiO2 nanocomposite. By adding water to tetraethyl orthosilicate (TEOS) in ethanol of the molar ratio at H2O to TEOS of 0.21 as a template, the hydrolysis-condensation reaction of sol-gel by changing pH values of the system (i.e., 2.46 and 8.95) for 0 to 9 hours was studied. Additionally, variables of temperature, the amount of water and the stirring time are used to investigate whether the silanol of the uncured modified epoxy resin contributes to the formation of silica. Epoxy/SiO2 nanocomposites were prepared by changing the synthetic conditions including acid solution (solution of hydrochloric acid with pH=4) , base solution (solution of ammonia with pH=11), water content (0%~1%) and curing conditions. Then, degree of condensation and particle size of silica and effect of thermal properties of composites were studied. The hydrolysis-condensation reaction for 0 to 9 hours for TEOS/ethanol solution was analyzed by 29Si NMR. The solution was hydrolyzed with the structure of Q_0^1 (i.e., Si(OEt)3(OH), where Et is C2H5 ) and its chemical shift is about -78 ppm at pH=2.46, and no hydrolyzed intermediate appeared at pH=8.95. The epoxy/SiO2 composites were prepared and analyzed. Since amino group of APS possesses stronger reactivity toward epoxide, the absorption peak of epoxide group at 916 cm-1 of FTIR spectra decreases gradually with reaction time and finally disappear after 2 hour. It was confirmed that the reaction time for amine addition with epoxide at 60 °C was accomplished within 2 hours. By TGA analysis, its reveals that the silane of the modified epoxy resin promotes the formation of silica with the temperature, the amount of added water and the stirring time. By 29Si solid state NMR analysis, the silica in the composite only shows the structure of T3 (i.e., Si(OSi≣)3) and its chemical shift is about -69 ppm, regardless of changing the acid solution, base solution and content of water which indicate silica has completely condensed. According to SEM and EDS analysis, the silica is uniformly distributed in the composites and the particle size range is 30 nm~80 nm, which in is nanometer scale, and their particle size are not affected by acid solution, base solution and added water. TGA analysis shows the decomposition temperature of 5% weight loss (Td5) of composites prepared by acid solution, base solution and addition of water is about 349 °C, and that of the pure epoxy is about 335 °C, indicating that the silica in the composite has good heat resistance. The difference in temperature is 14 °C. Through DSC measurements, the Tg of epoxy/SiO2 nanocomposite prepared under different pH conditions gives a minimum of 128.7 °C and the maximum of 140.9 °C that are higher than that of pure epoxy, whose Tg is 120.1 °C.
APA, Harvard, Vancouver, ISO, and other styles
28

Nagel, Rudolf [Verfasser]. "Eine Milliarde Jahre geologischer Entwicklung am NW-Rand des Kalahari-Kratons / vorgelegt von Rudolf Nagel." 1999. http://d-nb.info/963612484/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Drobe, Malte [Verfasser]. "Neoproterozoische bis paläozoische Krustendynamik am Westrand des Río de la Plata Kratons / vorgelegt von Malte Drobe." 2009. http://d-nb.info/1003638244/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nwaila, Tsundukani Glen. "Geochemistry of Palaeoarchaean to Palaeoproterozoic Kaapvaal Craton marine shales: Implications for sediment provenance and siderophile elements endowment." Doctoral thesis, 2017. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-155326.

Full text
Abstract:
The Kaapvaal Craton hosts a number of large gold deposits (e.g. Witwatersrand Supergroup) which mining companies have exploited at certain stratigraphic positions. It also hosts the largest platinum group element (PGE) deposits (e.g. Bushveld Igneous Complex) which mining companies have exploited in different mineralised layered magmatic zones. In spite of the extensive exploration history in the Kaapvaal Craton, the origin of the Witwatersrand gold deposits and Bushveld Igneous Complex PGE deposits has remained one of the most debated topics in economic geology. The goal of this study was to identify the geochemical characteristics of marine shales in the Barberton, Witwatersrand, and Transvaal supergroups in South Africa in order to make inferences on their sediment provenance and siderophile element endowments. Understanding why some of the Archaean and Proterozoic hinterlands are heavily mineralised, compared to others with similar geological characteristics, will aid in the development of more efficient exploration models. Fresh, unmineralised marine shales from the Barberton (Fig Tree and Moodies groups), Witwatersrand (West Rand and Central Rand groups), and Transvaal (Black Reef Formation and Pretoria Group) supergroups were sampled from drill core and underground mining exposures. Analytical methods, such as X-ray powder diffraction (XRD), optical microscopy, X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and electron microprobe analysis (EMPA) were applied to comprehensively characterise the shales. All of the Au and PGE assays examined the newly collected shale samples. The Barberton Supergroup shales consist mainly of quartz, illite, chlorite, and albite, with diverse heavy minerals, including sulfides and oxides, representing the minor constituents. The regionally persistent Witwatersrand Supergroup shales consist mainly of quartz, muscovite, and chlorite, and also contain minor constituents of sulfides and oxides. The Transvaal Supergroup shales comprise quartz, chlorite, and carbonaceous material. Major, trace (including rare-earth element) concentrations were determined for shales from the above supergroups to constrain their source and post-depositional evolution. Chemical variations were observed in all the studied marine shales. Results obtained from this study revealed that post-depositional modification of shale chemistry was significant only near contacts with over- and underlying coarser-grained siliciclastic rocks and along cross-cutting faults, veins, and dykes. Away from such zones, the shale composition remained largely unaltered and can be used to draw inferences concerning sediment provenance and palaeoweathering in the source region and/or on intrabasinal erosion surfaces. Evaluation of weathering profiles through sections of the studied supergroups revealed that the shales therein are characterised by high chemical index of alteration (CIA), chemical index of weathering (CIW), and index of compositional variability (ICV), suggesting that the source area was lithologically complex and subject to intense chemical weathering. A progressive change in the chemical composition was identified, from a dominant ultramafic–mafic source for the Fig Tree Group to a progressively felsic–plutonic provenance for the Moodies Group. The West Rand Group of the Witwatersrand Supergroup shows a dominance of tonalite–trondhjemite–granodiorite and calcalkaline granite sources. Compositional profiles through the only major marine shale unit within the Central Rand Group indicate the progressive unroofing of a granitic source in an otherwise greenstone-dominated hinterland during the course of sedimentation. No plausible likely tectonic setting was obtained through geochemical modelling. However, the combination of the systematic shale chemistry, geochronology, and sedimentology in the Witwatersrand Supergroup supports the hypothesised passive margin setting for the >2.98 to 2.91 Ga West Rand Group, and an active continental margin source for the overlying >2.90 to 2.78 Ga Central Rand Group, along with a foreland basin setting for the latter. Ultra-low detection limit analyses of gold and PGE concentrations revealed a variable degree of gold accumulation within pristine unmineralised shales. All the studied shales contain elevated gold and PGE contents relative to the upper continental crust, with marine shales from the Central Rand Group showing the highest Au (±9.85 ppb) enrichment. Based on this variation in the provenance of contemporaneous sediments in different parts of the Kaapvaal Craton, one can infer that the siderophile elements were sourced from a fertile hinterland, but concentrated into the marine shales by a combination of different processes. It is proposed that accumulation of siderophile elements in the studied marine shales was mainly controlled by mechanical coagulation and aggregation. These processes involved suspended sediments, fine gold particles, and other trace elements being trapped in marine environments. Mechanical coagulation and aggregation resulted in gold enrichments by 2–3 orders of magnitude, whereas some of the gold in these marine shales can be reconciled by seawater adsorption into sedimentary pyrite. For the source of gold and PGEs in the studied marine shales in the Kaapvaal Craton, a genetic model is proposed that involves the following: (1) A highly siderophile elements enriched upper mantle domain, herein referred to as “geochemically anomalous mantle domain”, from which the Kaapvaal crust was sourced. This mantle domain enriched in highly siderophile elements was formed either by inhomogeneous mixing with cosmic material that was added during intense meteorite bombardment of the Hadaean to Palaeoarchaean Earth or by plume-like ascent of relics from the core–mantle boundary. In both cases, elevated siderophile elements concentrations would be expected. The geochemically anomalous mantle domain is likely the ultimate source of the Witwatersrand modified palaeoplacer gold deposits and was tapped again ca. 2.054 Ga during the emplacement of the Bushveld Igneous Complex. Therefore, I propose that there is a genetic link (i.e. common geochemically anomalous mantle source) between the Witwatersrand gold deposits and the younger Bushveld Igneous Complex PGE deposits. (2) Scavenging of crustal gold by various surface processes such as trapping of gold from Archaean/Palaeoproterozoic river water on the surface of local photosynthesizing cyanobacterial or microbial mats, and reworking of these mats into erosion channels during flooding events. The above two models complement each other, with model (1) providing a common geological source for the Witwatersrand gold and Bushveld Igneous Complex PGE deposits, and model (2) explaining the processes responsible for Witwatersrand-type gold pre-concentration processes. In sequences such as the Transvaal Supergroup, a less fertile hinterland and/or less reworking of older sediments led to a correspondingly lower gold endowment. These findings indicate temporal distribution of siderophile elements in the upper crust (e.g. marine shales). The overall implications of these findings are that background concentrations of gold and PGEs can be used to target potential exploration areas in other cratons of similar age. This increases the likelihood of finding other Witwatersrand-type gold or Bushveld Igneous Complex-type PGE deposits in other cratons
Der Kaapvaal Kraton beherbergt eine Vielzahl großer Goldlagerstätten (vor allem in der Witwatersrand Hauptgruppe), die von Bergbaugesellschaften in ihrer jeweiligen stratigraphischen Position abgebaut werden. Im diesem Kraton liegen auch die größten Lagerstätten für Platingruppenelemente (vornehmlich im Bushveld Komplex), die aus diversen magmatischen Intrusionskörpern gewonnen werden. Trotz der intensiven und langen Explorationsgeschichte im Bereich des Kaapvaal Kratons ist die Herkunft des Goldes in den Witwatersrand Lagerstätten und die der Platingruppenelemente in den Lagerstätten des Bushveld-Komplex noch ungeklärt und Gegenstand aktueller Diskussionen. Ziel der Arbeit war die geochemische Charakterisierung von Tonschiefern in den Barberton-, Witwatersrand und Transvaal-Hauptgruppen, um Aussagen über deren Provenienz zu treffen und die Gehalte an siderophilen Elementen darin zu ermitteln. Ein verbessertes Verständnis, warum manche archaischen und proterozoischen Einheiten stark mineralisiert sind und andere nicht, sollte bei der Planung zukünftiger Explorationsprojekte dienlich sein. Um dieses Ziel zu erreichen, wurden unalterierte und nicht mineralisierte Proben mariner Tonschiefer aus der Barberton Hauptgruppe (Fig Tree und Moodies Gruppen), der Witwatersrand Hauptgruppe (West Rand und Central Rand Gruppen) und der Transvaal Hauptgruppe (Black Reef Formation und Pretoria Gruppe) aus Untertage Bergbau-Bereichen sowie aus Bohrkernen genommen. Zur Charakterisierung der Tonschiefer kamen verschiedene Methoden zum Einsatz, darunter die Pulverdiffraktometrie (XRD), Durchlichtmikroskopie, Röntgenfluoreszenz (XRF), Optische Emissionsspektroskopie (ICP-OES), Laserablationsmassenspektrometrie (ICP-MS) und Elektronenstrahlmikrosonde (EMPA), sowie Bestimmung der Gold und Platingruppen-Elementkonzentrationen mittels Graphitrohr-AAS nach Voranreicherung mit der Nickelsulfid-Dokimasie. Die untersuchten Tonschiefer verhielten sich seit ihrer Ablagerung als größtenteils geschlossene Systeme. Nur entlang der Kontakte mit unter- und überlagernden grobkörnigeren Metasedimentgesteinen sowie entlang durchkreuzender Störungen, Quarzadern und Gängen konnte lokal nennenswerte Alteration festgestellt werden. Solche Zonen wurden explizit von der Provenienz-Analyse ausgenommen. Systematische Unterschiede in der primären chemischen Zusammensetzung einzelner Tonschiefer-Abfolgen belegen unterschiedliche Sedimentquellen. So wurde in der Barberton Hauptgruppe der Sedimenteintrag der Fig Tree-Gruppe von einer ultramafisch-mafischen Quelle dominiert, während in der Moodies-Gruppe felsische Quellen eine zunehmende Rolle spielten. In der Witwatersrand Hauptgruppe wurde eine Dominanz von Tonalit-Trondhjemit-Granodiorit sowie kalkalkaline Granite im Liefergebiet der West Rand Gruppe festgestellt, während in der Central Rand Gruppe anfänglich mafisch-ultramafische Gesteine im Sedimentliefergebiet vorherrschten, im Lauf der Zeit aber granitische Gesteine mehr und mehr durch Erosion im Hinterland freigelegt worden waren. Die Geochemie der Witwatersrand Tonschiefer unterstützt die Hypothese, dass die Sedimente der West Rand Gruppe an einem passiven Kontinentalrand abgelagert wurden, jene der Central Rand Gruppe in einem Vorlandbecken. Alle untersuchten archaischen Tonschiefer zeigen, verglichen mit dem Durchschnitt der oberen Erdkruste, deutlich erhöhte Gehalte an Gold und Platingruppenelementen, wobei die marinen Tonschiefer aus der Central Rand Gruppe mit durchschnittlich 9,85 ppm Au die höchsten Konzentrationen aufweisen. Die Gehalte an siderophilen Elementen in der palaeoproterozoischen Transvaal Hauptgruppe nähern sich hingegen typischen kontinentalen Krustenwerten an. Der verstärkte Eintrag von Au und PGE in die archaischen marinen tonigen Sedimente wird durch mechanische Koagulation und Aggregation erklärte, wobei feinstkörnige Goldpartikel im suspendierten Sediment weit ins Meer transportiert worden sind. Adsorption von Au aus Meerwasser an syn-sedimentärem Pyrit spielte auch eine Rolle, aber keine ausschlaggebende. Für die Quelle des Goldes und der Platingruppenelemente in den untersuchten Tonschiefern wurde folgendes genetisches Modell entwickelt. (1) Es wird angenommen, dass sich die Kaapvaal-Kruste aus einem Mantelreservoir differenzierte, welches an siderophilen Elementen angereichert war. Diese Anreicherung könnte entweder das Produkt eines nicht vollständig homogenisierten Eintrags kosmischen Materials sein, welches im Hadaikum oder im Paläoarchaikum durch intensives Meteoritenbombardement eingebracht wurde, oder durch den Aufstieg eines Manteldiapirs aus dem Bereich der Kern-Mantel-Grenze. (2) Tiefgründige Verwitterung unter anoxischen Bedingungen ermögliche die Freisetzung großer Mengen von Au, welches in gelöster Form über Oberflächenwässer in den archaischen Ozean transportiert wurde. Hinweise auf solch intensive Verwitterung liefern die geochemischen Daten der hier untersuchten Tonschiefern, insbesondere hohe chemische Alterationsindizes. Fixierung dieses Goldes durch verschiedene Oberflächenprozesse, wie Filterung aus archaischen/paläoproterozoischen Flüssen durch Photosynthese-betreibende Bakterienrasen führte vor allem im Mesoarchaikum in Zeiten der Sedimentation der Central Rand Gruppe zu lokal extremen Goldanreicherungen, die in der Folge durch Erosion und mechanischen Transport großteils weiter umgelagert wurden. Punkt 1 könnte eventuell die räumliche Nähe der weltweit größten bekannten Goldanomalie im Witwatersrand Becken und der größten PGE-Anomalie im Bushveld Komplex erklären. In wie weit die erhöhten Hintergrundkonzentrationen von Gold und Platingruppenelementen im Kaapvaal Kraton einzigartig sind, gilt es in zukünftigen Studien dieser Art auch an marinen Tonschiefern aus dem Archaikum in anderen Kratonen zu testen
APA, Harvard, Vancouver, ISO, and other styles
31

Deters-Itzelsberger, Peter [Verfasser]. "Gesteinseinschlüsse unterschiedlicher Zusammensetzung in den Peninsular Gneisen Südindiens : isotopengeochemische Untersuchungen zu ihrer Stellung im Geosystem Dharwar Kraton / vorgelegt von Peter Deters-Itzelsberger." 2003. http://d-nb.info/971102910/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lima, Wilson Fernandes. "Requalificação de um espectrómetro Kratos XSAM 800 para espectroscopia de fotoelectrões de Raios-X." Master's thesis, 2015. http://hdl.handle.net/10362/16189.

Full text
Abstract:
A espectroscopia de fotoelectrões de raios-X (XPS - X-ray Photoelectron Spectroscopy)é uma das técnicas de análise de superfícies mais importantes e mais usadas em diversasáreas científico-tecnológicas e industriais. Com ela é possível determinar quantitativa equalitativamente a composição elementar e a composição química aproximada, respectivamente,e estrutura electrónica dos elementos presentes para diferentes tipos de materiais. O laboratório de ciência de superfícies do Departamento de Física da FCT-UNL encontra-se equipado com um sistema de ultra-alto vácuo Kratos XSAM 800 contendo a instrumentação necessária para se realizar XPS. No entanto, o equipamento precisava de uma requalificação. O controlo e aquisição de dados do espectrómetro era feito por um computador PDP11 de 16-bits que actualmente não é comercializado e não tem qualquer suporte técnico por parte do fabricante. Foi substituído por um computador moderno e por uma placa genérica de aquisição de dados. Para que a análise quantitativa pela técnica de XPS seja precisa, é necesssário fazer a caracterização do sistema. Isso implica o conhecimento de parâmetros como a função de transmissão do espectrómetro e a linearidade da resposta do sistema de detecção. Foi feito um estudo da linearidade da resposta do sistema de detecção e determinou-se experimentalmente a função de transmissão do espectrómetro. Os resultados obtidos para a função de transmissão mostraram estar qualitativamente de acordo com os resultados obtidos por outros na literatura. A transmissão da coluna óptica do analisador de energia de electrões foi posteriormente submetida a um processo de optimização, através da implementação de um algoritmo evolutivo diferencial para optimização de funções, recorrendo a linguagem de programação gráfica LabVIEWTM.
APA, Harvard, Vancouver, ISO, and other styles
33

Oliveira, Ana Sofia da Silva. "Substâncias Psicoativas presentes nas Legal Highs Adquiridas nas Smartshops ou pela Internet: Caracterização Química e Estudo da Citotoxicidade In Vitro do Kratom (Mitragyna Speciosa)." Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/76943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Oliveira, Ana Sofia da Silva. "Substâncias Psicoativas presentes nas Legal Highs Adquiridas nas Smartshops ou pela Internet: Caracterização Química e Estudo da Citotoxicidade In Vitro do Kratom (Mitragyna Speciosa)." Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/76943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dias, Patrícia Jesus Nunes. "Toxicidade de novas drogas de abuso de origem vegetal." Master's thesis, 2013. http://hdl.handle.net/10451/36820.

Full text
Abstract:
Trabalho Final de Mestrado Integrado, Ciências Farmacêuticas, Universidade de Lisboa, Faculdade de Farmácia, 2014
Alguns produtos de origem vegetal estão a emergir como populares drogas de abuso para uso recreativo. Apesar do seu potencial de abuso e possíveis efeitos adversos graves, estes produtos são vistos como seguros e a falta de legislação torna-os legais. Esta situação e a facilidade com que estão disponíveis levou a que estas substâncias sejam conhecidas também como legal highs. De entre as muitas legal highs disponíveis o kratom, a sálvia e o khat estão entre os mais conhecidos e são amplamente usados. Estudos sobre a sua toxicidade demonstram haver efeitos adversos, evidenciando assim que podem não ser produtos completamente seguros e representar um perigo para a saúde pública.
Some herbal products are emerging as popular drugs for recreational abuse. Despite the potential for abuse and serious adverse effects, these products are seen like safe and the lack of legislation make them legal. This situation and the ease of accessibility, make these products known as legal highs. From the great number of available legal highs kratom, salvia and khat are the most well-known and largely used. Researches about their toxicity show that there are adverse effects, so these products can be no completely safe and representing a danger for public health.
APA, Harvard, Vancouver, ISO, and other styles
36

Gärtner, Andreas. "Geologic evolution of the Adrar Souttouf Massif (Moroccan Sahara) and its significance for continental-scaled plate reconstructions since the Mid Neoproterozoic." Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A30863.

Full text
Abstract:
Located in the south of the Moroccan Sahara, the Adrar Souttouf Massif is the northern continuation of the Mauritanides at the western margin of the West African Craton. The massif itself exhibits a complex polyphase geologic history and contains four geologically different, SSW-NNE trending main units named from west to east: Oued Togba, Sebkha Gezmayet, Dayet Lawda, Sebkha Matallah. They are thrusted over each other in thin-skinned nappes with local windows of the discordantly overlain Archaean Reguibat basement. The eastern margin of the massif is bordered by the Tiris and Tasiast-Tijirit areas of the Reguibat Shield as well as its (par-) autochthonous Palaeozoic cover sequence, termed Dhloat Ensour unit. More than 5.500 U-Th-Pb age determinations and over 1.000 Hf isotopic measurements on single zircon grains from igneous, metamorphic, and sedimentary rocks of all the massifs units and its vicinity have yet been obtained. Most of the zircons were studied with respect to their morphological features. This method improves the accuracy of provenance studies by detecting varying zircon morphologies in space and time. These data are accompanied by U-Th-Pb age determinations on apatite as well as rutile. Together, they allow proposing a model of the geologic evolution of this poorly mapped area for the last 635 Ma. A combination of the obtained data with extensive zircon age databases of the surrounding cratons and terranes facilitates continental-scaled palaeogeographic reconstructions. Regarding the geologic evolution of the Adrar Souttouf Massif, the assembly of the first units began prior to 635 Ma. Although containing all the major zircon age and Hf-isotope populations of the West African Craton as well as some Mesoproterozoic grains, the Sebkha Gezmayet unit lies to the west of the Dayet Lawda unit of oceanic island arc composition. Hence, the Sebkha Gezmayet unit must have been rifted away from the craton prior to the formation of the oceanic unit within the West African Neoproterozoic Ocean at about 635 Ma. Recently published Hf and zircon age data of this unit suggest that the island arc was derived from a juvenile mantle source. Subsequently, the accretion of precursors of the Oued Togba and Sebkha Gezmayet units as well as a partial obduction of the oceanic Dayet Lawda unit and the Neoproterozoic sediments of a foreland basin (Sebkha Matallah unit) onto the Reguibat Shield took place. Peak metamorphism in the obducted oceanic rocks was reached at about 605 Ma. Magmatism in the western units between 610 and 570 Ma suggests on-going tectonic activity. The Early and Middle Cambrian is characterised by the erosion of the Ediacaran orogen and deposition of thick sedimentary sequences at the Sebkha Matallah unit, which acted as foreland basin. These sediments show a mostly West African zircon record with only some Mesoproterozoic grains provided by the westernmost parts of the massif. Initial rifting of the Oued Togba and Sebkha Gezmayet units from the remaining areas presumably occurred during the Late Cambrian. Coeval granitoid intrusions occurred on both sides of the rift. The two rifted units were likely involved to the polyphased Appalachian orogenies, which is emphasised by Devonian magmatism. Thus, and with respect to the isotopic data, the Oued Togba unit is interpreted to be of Avalonia affinity, while the Sebkha Gezmayet unit can likely be linked to Meguma. The units which remained at the West African Craton underwent intense sediment recycling during the entire Ordovician to Devonian times. Final accretion of all units and formation of the current massif was achieved during the Variscan-Alleghanian orogeny. This was accompanied by magmatism in the Sebkha Gezmayet unit and intense metamorphism of the Reguibat basement, whose zircons often show lower discordia intercepts of Carboniferous or Permian age. The post-Variscan period is characterised by erosion of the orogen and subjacent alternating cycles of sedimentation and deflation. The Adrar Souttouf Massifs importance for palaeogeographic reconstructions is given by the striking differences in the zircon age and Hf-isotope record of its westernmost Oued Togba unit and the remaining area. The results obtained from the Oued Togba unit resemble the published data of the Avalonia type terranes including prominent Mesoproterozoic, Ediacaran-Early Cambrian, as well as Early Devonian age populations. Many Mesoproterozoic zircons, which are exotic for the West African Craton prior to 635 Ma, form a ca. 1.20 to 1.25 Ga age peak that is an excellent tracer for detrital provenance studies and source craton identification of the sedimentary rocks. This is also valid for some sedimentary samples that do not show ages younger than 700 Ma, but large quantities of Mesoproterozoic zircon. These rocks can be correlated to similar sediments in Mauritania and W-Avalonia and are thought to be of pre-pan-African", i.e. pre-Ediacaran or even pre-Cryogenian age. They may give direct insights to the source area in Early to Mid Neoproterozoic times. Accordingly, comparison with published data of Amazonia and Baltica, allows setting up new hypotheses for the pre-Ediacaran history of the Avalonian type terranes. Lacking of magmatism in Amazonia between ca. 1200 and ca. 1300 Ma favours Baltica as source craton for the Avalonian terranes and requires a new point of view for the Neoproterozoic palaeogeography.
APA, Harvard, Vancouver, ISO, and other styles
37

Meireles, Vânia Sofia de Oliveira. "Mitragyna speciosa: aspetos analíticos e toxicológicos." Master's thesis, 2017. http://hdl.handle.net/10400.6/8318.

Full text
Abstract:
O presente relatório de estágio encontra-se inserido na unidade curricular Estágio Curricular do Mestrado Integrado de Ciências Farmacêuticas. Deste trabalho constam três partes: a primeira referente ao trabalho de pesquisa bibliográfica, uma revisão da literatura no âmbito da toxicidade da Mitragyna speciosa, o seu consumo como droga de abuso bem como o seu doseamento; a segunda aborda o estágio curricular realizado em farmácia comunitária e a terceira aborda o estágio curricular realizado em farmácia hospitalar. O primeiro capítulo intitula-se “Mitragyna speciosa: aspetos analíticos e toxicológicos” e explora a planta Mitragyna speciosa. O uso de substâncias para, de certa forma, beneficiar dos seus efeitos é um fenómeno bem conhecido, e muitas dessas substâncias são geralmente associadas a tradições ancestrais e remédios caseiros. É o caso da Mitragyna speciosa (kratom), uma árvore tropical que foi inicialmente usada principalmente no Sudeste Asiático para melhorar o desempenho no trabalho e suportar condições térmicas severas. Devido ao facto de que se encontra disponível na internet para compra, o seu uso está agora amplamente difundido, tornando-se uma questão importante sobre a qual não existe ainda informação suficiente. A pesquisa bibliográfica realizada pretende então dar uma visão sobre o kratom. O objetivo principal é compreender a sua origem, formas e razões para consumo, metodologias analíticas, mecanismo de ação e, portanto, os seus efeitos clínicos, assim como os seus potenciais riscos com base numa série de estudos realizados até à data. O segundo capítulo é referente ao estágio curricular que desenvolvi na farmácia do Sameiro, em Penafiel. Neste capítulo são descritas as competências técnicas desenvolvidas no âmbito da realidade farmacêutica no contexto de farmácia comunitária. O terceiro capítulo é referente ao estágio curricular que desenvolvi na Unidade local de Saúde da Guarda (ULSG), onde são descritas todas as atividades desenvolvidas e competências adquiridas, desta vez num contexto de farmácia hospitalar.
The present report is part of a curricular unit named Internship of Integrated Master in Pharmaceutical Sciences. This work is divided into three parts: the first one concerns a bibliographical review on the toxicity of Mitragyna speciosa, its consumption as drug of abuse and its measurement in samples of different origin. The second part refers to the curricular internship that took place in a community pharmacy, while the third part refers to the curricular internship that took place in a hospital pharmacy. The first chapter is entitled “Mitragyna speciosa: analytical and toxicological aspects” and explores the plant Mitragyna speciosa. The use of substances to, in some way, benefit from their effects is a well-known phenomenon, and many of these substances are usually associated to ancestral traditions and home remedies. This is the case of Mitragyna speciosa (kratom), a tropical tree that was initially mostly used in Southeast Asia to improve work performance and to withstand great heat situations. Due to the fact that it is available on the internet for purchase, its use is now widely spread, becoming an important issue, due to the lack of adequate information. This chapter intends to give a close insight about kratom. The main goal is to understand its origin, consumption, analytical methodologies for analysis, mechanism of action and clinical effects and potential risks, based on a series of studies performed so far. The second chapter refers to the curricular internship I developed at the Farmácia do Sameiro in Penafiel. This chapter describes the technical competences developed within the scope of the pharmaceutical reality in the context of community pharmacy. The third chapter refers to the curricular internship that I developed at the Unidade local de Saúde da Guarda (ULSG), where all the activities developed and skills acquired are described, this time in a hospital pharmacy context.
APA, Harvard, Vancouver, ISO, and other styles
38

Dittrich, Thomas. "Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) Pegmatites (Western Australia, Zimbabwe) and a Genetic Model for the Formation of Massive Pollucite Mineralisations." Doctoral thesis, 2016. https://tubaf.qucosa.de/id/qucosa%3A23157.

Full text
Abstract:
Lithium Cesium Tantalum (LCT) pegmatites are important resources for rare metals like Cesium, Lithium or Tantalum, whose demand increased markedly during the past decade. At present, Cs is known to occur in economic quantities only from the two LCT pegmatite deposits at Bikita located in Zimbabwe and Tanco in Canada. Host for this Cs mineralisation is the extreme rare zeolite group mineral pollucite. However, at Bikita and Tanco, pollucite forms huge massive, lensoid shaped and almost monomineralic pollucite mineralisations that occur within the upper portions of the pegmatite. In addition, both pegmatite deposits have a comparable regional geological background as they are hosted within greenstone belts and yield a Neoarchean age of about 2,600 Ma. Furthermore, at present the genesis of these massive pollucite mineralisations was not yet investigated in detail. Major portions of Western Australia consist of Meso- to Neoarchean crustal units (e.g., Yilgarn Craton, Pilbara Craton) that are known to host a large number of LCT pegmatite systems. Among them are the LCT pegmatite deposits Greenbushes (Li, Ta) and Wodgina (Ta, Sn). In addition, small amounts of pollucite were recovered from one single diamond drill core at the Londonderry pegmatite field. Despite that, no systematic investigations and/or exploration studies were conducted for the mode of occurrence of Cs and especially that of pollucite in Western Australia. In the course of the present study nineteen individual pegmatites and pegmatite fields located on the Yilgarn Craton, Pilbara Craton and Kimberley province have been visited and inspected for the occurrence of the Cs mineral pollucite. However, no pollucite could be detected in any of the investigated pegmatites. Four of the inspected LCT-pegmatite systems, namely the Londonderry pegmatite field, the Mount Deans pegmatite field, the Cattlin Creek LCT pegmatite deposit (Yilgarn Craton) and the Wodgina LCT pegmatite deposit (Pilbara Craton) was sampled and investigated in detail. In addition, samples from the Bikita pegmatite field (Zimbabwe Craton) were included into the present study in order to compare the Western Australian pegmatites with a massive pollucite mineralisation bearing LCT pegmatite system. This thesis presents new petrographical, mineralogical, mineralchemical, geochemical, geochronological, fluid inclusion and stable and radiogenic isotope data. The careful interpretation of this data enhances the understanding of the LCT pegmatite systems in Western Australia and Zimbabwe. All of the four investigated LCT pegmatite systems in Western Australia, crop out in similar geological settings, exhibit comparable internal structures, geochemistry and mineralogy to that of the Bikita pegmatite field in Zimbabwe. Furthermore, in all LCT pegmatite systems evidences for late stage hydrothermal processes (e.g., replacement of feldspars) and associated Cs enrichment (e.g., Cs enriched rims on mica, beryl and tourmaline) is documented. With the exception of the Wodgina LCT pegmatite deposit, that yield a Mesoarchean crystallisation age (approx. 2,850 Ma), all other LCT pegmatite systems gave comparable Neoarchean ages of 2,630 Ma to 2,600 Ma. The almost identical ages of the LCT pegmatite systems of the Yilgarn and Zimbabwe cratons suggests, that the process of LCT pegmatite formation at the end of the Neoarchean was active worldwide. Nevertheless, essential distinguishing feature of the Bikita pegmatite field is the presence of massive pollucite mineralisations that resulted from a process that is not part of the general development of LCT pegmatites and is associated with the extreme enrichment of Cs. The new findings of the present study obtained from the Bikita pegmatite field and the Western Australian LCT pegmatite systems significantly improve the knowledge of Cs behaviour in LCT pegmatite systems. Therefore, it is now possible to suggest a genetical model for the formation of massive pollucite mineralisations within LCT pegmatite systems. LCT pegmatites are generally granitic in composition and are interpreted to represent highly fractionated and geochemically specialised derivates from granitic melts. Massive pollucite mineralisation bearing LCT pegmatites evolve from large and voluminous pegmatite melts that intrude as single body along structures within an extensional tectonic setting. After emplacement, initial crystallisation will develop the border and wall zone of the pegmatites, while due to fractionated crystallisation immobile elements (i.e., Cs, Rb) become enriched within the remaining melt and associated hydrothermal fluids. Following this initial crystallisation, a relatively small portion (0.5–1 vol.%) of immiscible melt or fluid will separate during cooling. This immiscible partial melt/fluid is enriched in Al2O3 and Na2O, as well as depleted in SiO2 and will crystallise as analcime. In addition, this melt might allready contains up to 1–2 wt.% Cs2O. However, due to the effects of fluxing components (e.g., H2O, F, B) this analcime melt becomes undercooled which prevents crystallisation of the analcime as intergranular grains. Since this analcime melt exhibits a lower relative gravity when compared to the remaining pegmatite melt the less dense analcime melt will start to ascent gravitationally and accumulate within the upper portion of the pegmatite sheet. At the same time, the remaining melt will start to crystallise separately and form the inner portions of the pegmatite. This crystallisation is characterised by still ongoing fractionation and enrichment of incompatible elements (i.e., Cs, Rb) within the last crystallising minerals (e.g., lepidolite) or concentration of these incompatible elements within exsolving hydrothermal fluids. As analcime and pollucite form a continuous solid solution series, the analcime melt is able to incorporate any available Cs from the melt and/or associated hydrothermal fluids and crystallise as Cs-analcime in the upper portion of the pegmatite sheet. Continuing hydrothermal activity and ongoing substitution of Cs will then start to shift the composition from Cs-analcime composition towards Na-pollucite composition. In addition, if analcime is cooled below 400 °C it is subjected to a negative thermal expansion of about 1 vol.%. This contraction results in the formation of a prominent network of cracks that is filled by late stage minerals (e.g., lepidolite, quartz, feldspar and petalite). Certainly, prior to filling, this network of cracks enhances the available conduits for late stage hydrothermal fluids and the Cs substitution mechanism within the massive pollucite mineralisation. Furthermore, during cooling of the pegmatite, prominent late stage mineral replacement reactions (e.g., replacement of K-feldspar by lepidolite, cleavelandite, and quartz) as well as subsolidus self organisation processes in feldspars take place. These processes are suggested to release additional incompatible elements (e.g., Cs, Rb) into late stage hydrothermal fluids. As feldspar forms large portions of pegmatite a considerable amount of Cs is released and transported via the hydrothermal fluids towards the massive pollucite mineralisation in the upper portion of the pegmatite. Consequently, the initial analcime can accumulate enough Cs in order to shift its composition from the Cs-analcime member (>2 wt.% Cs2O) towards the Na-pollucite member (23–43 wt.% Cs2O) of the solid solution series. The timing of this late stage Cs enrichment is interpreted to be quasi contemporaneous or immediately after the complete crystallisation of the pegmatite melt. However, much younger hydrothermal events that overprint the pegmatite are also interpreted to cause similar results. Hence, it has been demonstrated that the combination of this magmatic and hydrothermal processes is capable to generate an extreme enrichment in Cs in order to explain the formation of massive pollucite mineralisations within LCT pegmatite systems. This genetic model can now be applied to evaluate the potential for occurrences of massive pollucite mineralisations within LCT pegmatite systems in Western Australia and worldwide.:Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction 1 1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Fundamentals 7 2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13 2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34 2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40 2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43 3. Geological Settings of Archean Cratons 47 3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48 3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49 3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52 3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58 3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62 3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70 3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76 3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76 3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85 3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91 3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99 3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101 3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105 3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106 4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115 4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115 4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120 4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123 5. Petrography and Mineralogy 139 5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141 5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141 5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162 6. Geochemistry 165 6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174 6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7. Geochronology 193 7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203 7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8. Fluid Inclusion Study 211 8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212 9. Stable and Radiogenic Isotopes 217 9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217 9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220 9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.Discussion 227 10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227 10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227 10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229 10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233 10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233 10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243 10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252 10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.Summary and Conclusions 267 References 273 Lists of Abbreviations 309 General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 List of Figures 311 List of Tables 315 Appendix 317 A. Legend for Topographic Maps 319 B. Sample List 323 C. Methodology 331 C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331 C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336 C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338 D. Data – Mineral Liberation Analysis 341 E. Data – Geochemistry 345 F. Data – Geochronology 349 G. Data – Stable and Radiogenic Isotopes 353
Lithium-Caesium-Tantal-(LCT) Pegmatite repräsentieren eine bedeutende Quelle für seltene Metalle, deren Bedarf im letzten Jahrzehnt beträchtlich angestiegen ist. Im Falle von Caesium sind zurzeit weltweit nur zwei LCT-Pegmatitlagerstätten bekannt, die abbauwürdige Vorräte an Cs enthalten. Dies sind die LCT-Pegmatitlagerstätten Bikita in Simbabwe und Tanco in Kanada. Das Wirtsmineral für diese Cs-Mineralisation ist das extrem selten auftretende Zeolith-Gruppen-Mineral Pollucit. In den Lagerstätten Bikita und Tanco bildet Pollucit dagegen massive, linsenförmige und fast monomineralische Pollucitmineralisationen, die in den oberen Bereichen der Pegmatitkörper anstehen. Zusätzlich befinden sich beide Lagerstätten in geologisch vergleichbaren Einheiten. Die Nebengesteine sind Grünsteingürtel die ein neoarchaisches Alter von ca. 2,600 Ma aufweisen. Die Bildung derartiger massiver Pollucitmineralisationen ist bis jetzt noch nicht detailliert untersucht worden. Große Bereiche von Westaustralien werden von meso- bis neoarchaischen Krusteneinheiten (z.B. Yilgarn Kraton, Pilbara Kraton) aufgebaut, von denen auch eine große Anzahl an LCT-Pegmatitsystemen bekannt sind. Darunter befinden sich unter anderem die LCT-Pegmatitlagerstätten Greenbushes (Li, Ta) und Wodgina (Ta, Sn). Zusätzlich wurden kleine Mengen an Pollucit in einer einzigen Kernbohrung im Londonderry Pegmatitfeld angetroffen. Ungeachtet dessen, wurden in Westaustralien bis jetzt keine systematischen Untersuchungen und/oder Explorationskampagnen auf Vorkommen von Cs und speziell der von Pollucit durchgeführt. Im Verlauf dieser Studie wurden insgesamt neunzehn verschiedene Pegmatitvorkommen und Pegmatitfelder des Yilgarn Kratons, Pilbara Kratons und der Kimberley Provinz auf das Vorkommen des Minerals Pollucit untersucht. Allerdings konnte in keinem der untersuchten LCT-Pegmatitsystemen Pollucit nachgewiesen werden. Von vier der untersuchten LCT-Pegmatitsystemen, dem Londonderry Pegmatitfeld, dem Mount Deans Pegmatitfeld, der Cattlin Creek LCT-Pegmatitlagerstätte (Yilgarn Kraton) und der Wodgina LCT-Pegmatitlagerstätte (Pilbara Kraton) wurden detailliert Proben entnommen und weitergehend untersucht. Zusätzlich wurden die massiven Pollucitmineralisationen im Bikita Pegmatitfeld beprobt und in die detailierten Untersuchungen einbezogen. Der Probensatz aus dem Bikita Pegmatitfeld dient als Referenzmaterial mit dem die Pegmatitproben aus Westaustralien verglichen werden. Die vorliegende Arbeit fasst die wesentlichen Ergebnisse der petrographischen, mineralogischen, mineralchemischen, geochemischen und geochronologischen Untersuchungen sowie der Flüssigkeitseinschlussuntersuchungen und stabilen und radiogenen Isotopenzusammensetzungen zusammen. Alle vier der in Westaustralien untersuchten LCT-Pegmatitsysteme kommen in geologisch ähnlichen Rahmengesteinen vor, weisen einen vergleichbaren internen Aufbau, geochemische Zusammensetzung und Mineralogie zu dem des Bikita Pegmatitfeldes in Simbabwe auf. Weiterhin konnten in allen LCT-Pegmatitsystemen Hinweise für späte hydrothermale Prozesse (z.B. Verdrängung von Feldspat) nachgewiesen werden, die einhergehend mit einer Anreicherung von Cs verbunden sind (z.B. Cs-angereicherte Säume um Glimmer, Beryll und Turmalin). Mit der Ausnahme der Wodgina LCT-Pegmatitlagerstätte, in der ein mesoarchaisches Kristallisationsalter (ca. 2,850 Ma) nachgewiesen wurde, lieferten die Altersdatierungen in den anderen LCT-Pegmatitsystemen übereinstimmende neoarchaische Alter von 2,630 Ma bis 2,600 Ma. Diese fast identischen Alter der LCT-Pegmatitsysteme des Yilgarn und Zimbabwe Kratons suggerieren, dass die Prozesse, die zur LCT-Pegmatitbildung am Ende des Neoarchaikums führten, weltweit aktiv waren. Ungeachtet dessen stellt das Vorhandensein von massiver Pollucitmineralisation das Alleinstellungsmerkmal des Bikita Pegmatitfeldes dar, welche sich infolge eines Prozesses gebildet haben der nicht Bestandteil der üblichen LCT-Pegmatitentwicklung ist und sich durch eine extreme Anreicherung an Cs unterscheidet. Die neuen Ergebnisse die in dieser Studie von den Bikita Pegmatitfeld und den Westaustralischen LCT-Pegmatitsystemen gewonnen wurden, verbessern das Verständnis des Verhaltens von Cs in LCT-Pegmatitsystemen deutlich. Somit ist es nun möglich, ein genetisches Modell für die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen vorzustellen. LCT-Pegmatite weisen im Allgemeinen eine granitische Zusammensetzung auf und werden als Kristallisat von hoch fraktionierten und geochemisch spezialisierten granitischen Restschmelzen interpretiert. Die Bildung von massiven Pollucitmineralisationen ist nur aus großen und voluminösen Pegmatitschmelzen, die als einzelner Körper entlang von Störungen in extensionalen Stressregimen intrudieren möglich. Nach Platznahme der Schmelze bildet die beginnende Kristallisation zunächst die Kontakt- und Randzone des Pegmatits, wobei infolge von fraktionierter Kristallisation die immobilen Elemente (v.a. Cs, Rb) in der verbleibenden Restschmelze angereichert werden. Im Anschluss an diese erste Kristallisation entmischt sich nach Abkühlung eine sehr kleine Menge (0.5–1 vol.%) Schmelze und/oder Fluid von der Restschmelze. Diese nicht mischbare Teilschmelze/-fluid ist angereichert an Al2O3 und Na2O sowie verarmt an SiO2 und kristallisiert als Analcim. Zusätzlich kann diese Schmelze bereits mit 1–2 wt.% Cs2O angereichert sein. Aufgrund der Auswirkung von Flussmitteln (z.B. H2O, F, B) wird allerdings der Schmelzpunkt dieser Analcimschmelze herabgesetzt und so die Kristallisation des Analcims als intergranulare Körner verhindert. Da diese Analcimschmelze im Vergleich zu der restlichen Schmelze eine geringere relative Dichte besitzt, beginnt sie gravitativ aufzusteigen und sich in den oberen Bereichen des Pegmatitkörpers zu akkumulieren. Währenddessen beginnt die restliche Schmelze separat zu kristallisieren und die inneren Bereiche des Pegmatits zu bilden. Diese Kristallisation ist einhergehend mit fortschreitender Fraktionierung und der Anreicherung von inkompatiblen Elementen (v.a. Cs, Rb) in den sich als letztes bildenden Mineralphasen (z.B. Lepidolit) oder der Konzentration der inkompatiblen Element in die sich entmischenden hydrothermalen Fluiden. Da Analcim und Pollucit eine lückenlose Mischungsreihe bilden, ist die Analcimschmelze in der Lage, alles verfügbare Cs von der Restschmelze und/oder assoziierten hydrothermalen Fluiden an sich zu binden und als Cs-Analcim im oberen Bereich des Pegmatitkörpers zu kristallisieren. Fortschreitende hydrothermale Aktivität und Substitution von Cs verschiebt dann die Zusammensetzung des Analcims von der Cs-Analcim- zu Na-Pollucitzusammensetzung. Zusätzlich erfährt der Analcim bei Abkühlung unter 400 °C eine negative thermische Expansion von ca. 1 vol.%. Diese Kontraktion führt zu der Bildung des markanten Rissnetzwerkes das durch späte Mineralphasen (z.B. Lepidolit, Quarz, Feldspat und Petalit) gefüllt wird. Vor der Mineralisation allerdings, erhöht dieses Netzwerk an Rissen die verfügbaren Wegsamkeiten für die späten hydrothermalen Fluide und begünstigt somit den Cs-Substitutionsmechanismus in der massiven Pollucitmineralisation. Weiterhin kommt es bei der Abkühlung des Pegmatits zu späten Mineralverdrängungsreaktionen (z.B. Verdrängung von K-Feldspat durch Lepidolit, Cleavelandit und Quarz), sowie zu Subsolidus-Selbstordnungsprozessen in Feldspäten. Diese Prozesse werden weiterhin interpretiert inkompatible Elemente (z.B. Cs, Rb) in die späten hydrothermalen Fluide freizusetzen. Da Feldspäte große Teile der Pegmatite bilden, kann somit eine beträchtliche Menge an Cs freigeben werden und durch die späten hydrothermalen Fluide in die massive Pollucitmineralisation in den oberen Bereichen des Pegmatitkörpers transportiert werden. Infolgedessen ist es möglich, dass genügend Cs frei gesetzt werden kann, um die Zusammensetzung innerhalb der Mischkristallreihe von Cs-Analcim (>2 wt.% Cs2O) zu Na-Pollucit (23–43 wt.% Cs2O) zu verschieben. Die zeitliche Einordnung dieser späten Cs-Anreicherung wird als quasi zeitgleich oder im direkten Anschluss an die vollständige Kristallisation der Pegmatitschmelze interpretiert. Es kann allerdings nicht vernachlässigt werden, dass auch jüngere hydrothermale Ereignisse, die den Pegmatitkörper nachträglich überprägen, ähnliche hydrothermale Prozesse hervorrufen können. Somit konnte gezeigt werden, dass es durch Kombination dieser magmatischen und hydrothermalen Prozessen möglich ist, genügend Cs anzureichern, um die Bildung von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen zu ermöglichen. Dieses genetische Modell kann nun dazu genutzt werden, um das Potential von Vorkommen von massiven Pollucitmineralisationen in LCT-Pegmatitsystemen in Westaustralien und weltweit besser einzuschätzen.:Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction 1 1.1. Motivation and Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Fundamentals 7 2.1. The Alkali Metal Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Distribution of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2. Mineralogy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3. Geochemical Behaviour of Cesium . . . . . . . . . . . . . . . . . . . . 13 2.1.4. Economy of Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Pollucite – (Cs,Na)2Al2Si4O12×H2O . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1. Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. Analcime–Pollucite–Series . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3. Formation of Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4. Pollucite Occurences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Pegmatites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1. General Characteristics of Pegmatites . . . . . . . . . . . . . . . . . . 34 2.3.2. Controls on Pegmatite Formation and Evolution . . . . . . . . . . . . . 40 2.3.3. Pegmatite Age Distribution and Continental Crust Formation . . . . . . 43 3. Geological Settings of Archean Cratons 47 3.1. Zimbabwe Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.1. Tectonostratigraphic Subdivision . . . . . . . . . . . . . . . . . . . . . 48 3.1.2. Tectonometamorphic Evolution of the Northern Limpopo Thrust Zone . 49 3.1.3. Pegmatites within the Zimbabwe Craton . . . . . . . . . . . . . . . . . 52 3.1.4. Masvingo Greenstone Belt . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.5. Geological Setting of the Bikita Pegmatite District . . . . . . . . . . . . 58 3.2. Yilgarn Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2.1. Tectonostratigraphic Framework and Geological Development . . . . . 62 3.2.2. Tectonic Models for the Development . . . . . . . . . . . . . . . . . . . 70 3.2.3. Pegmatites within the Yilgarn Craton . . . . . . . . . . . . . . . . . . . 76 3.2.4. Geological setting of the Londonderry Pegmatite Field . . . . . . . . . . 76 3.2.5. Geological Setting of the Mount Deans Pegmatite Field . . . . . . . . . 85 3.2.6. Geological Setting of the Cattlin Creek Pegmatite Deposit . . . . . . . . 91 3.3. Pilbara Craton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3.1. Tectonostratigraphic Framework and Geological Development . . . . . 99 3.3.2. Tectonic Model for the Development . . . . . . . . . . . . . . . . . . . 101 3.3.3. Pegmatites within the Pilbara Craton . . . . . . . . . . . . . . . . . . . 105 3.3.4. Geological Setting of the Wodgina Pegmatite District . . . . . . . . . . 106 4. Fieldwork and Sampling of Selected Pegmatites and Pegmatite Fields 115 4.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.2.1. Londonderry Feldspar Quarry Pegmatite . . . . . . . . . . . . . . . . . 115 4.2.2. Lepidolite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.3. Tantalite Hill Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.1. Type I – Flat Lying Pegmatites . . . . . . . . . . . . . . . . . . . . . . . 118 4.3.2. Type II – Steeply Dipping Pegmatites . . . . . . . . . . . . . . . . . . . 120 4.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.5. Wodgina LCT-Pegmatite Deposit . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5.1. Mount Tinstone Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.2. Mount Cassiterite Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . 123 5. Petrography and Mineralogy 139 5.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 141 5.2. Mineralogical and Petrographical Characteristics of Individual Mineral Groups . 141 5.2.1. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.2. Quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.3. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.2.4. Pollucite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.2.5. Petalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.6. Spodumene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.2.7. Beryl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.2.8. Tourmaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.2.9. Apatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.2.10. Ta-, Nb- and Sn-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.3. Reconstruction of the General Crystallisation Sequence . . . . . . . . . . . . . 162 6. Geochemistry 165 6.1. Major Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.2. Selected Minor and Trace Elements . . . . . . . . . . . . . . . . . . . . . . . . 174 6.3. Fractionation Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.4. Rare Earth Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7. Geochronology 193 7.1. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.1.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.2. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.3. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 195 7.1.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7.2. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.2.1. Monazite Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.3. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 203 7.3.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.2. Londonderry Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 203 7.3.3. Mount Deans Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.4. Cattlin Creek Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.3.5. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8. Fluid Inclusion Study 211 8.1. Bikita Pegmatite Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.2. Wodgina Pegmatite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.3. Carbon Isotope Analysis on Fluid Inclusion Gas of Selected Mineral Phases . . 212 9. Stable and Radiogenic Isotopes 217 9.1. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.1.1. New Whole Rock Sm/Nd Data . . . . . . . . . . . . . . . . . . . . . . 217 9.2. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 220 9.2.1. New Lithium Isotope Data . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.Discussion 227 10.1. Regional Geological and Tectonomagmatic Development . . . . . . . . . . . . 227 10.1.1. Constraints from Field Evidence . . . . . . . . . . . . . . . . . . . . . . 227 10.1.2. Petrographical and Mineralogical Constraints . . . . . . . . . . . . . . 229 10.1.3. Geochemical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.1.4. Isotopic Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.1.5. Constraints from Fluid Inclusion Data . . . . . . . . . . . . . . . . . . . 233 10.1.6. Geochronological Constrains . . . . . . . . . . . . . . . . . . . . . . . 233 10.2. Massive Pollucite Mineralisations . . . . . . . . . . . . . . . . . . . . . . . . . . 243 10.2.1. Unique Characteristics of Massive Pollucite Mineralisations . . . . . . . 243 10.2.2. New Concepts for the Formation of Massive Pollucite Mineralisations . . 252 10.3. Genetic Model for the Formation of Massive Pollucite Mineralisations within LCT Pegmatite Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.Summary and Conclusions 267 References 273 Lists of Abbreviations 309 General Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 Mineral Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 List of Figures 311 List of Tables 315 Appendix 317 A. Legend for Topographic Maps 319 B. Sample List 323 C. Methodology 331 C.1. Quantitative Mineralogy by Means of Mineral Liberation Analysis . . . . . . . . 331 C.2. Geochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 C.3. 40Ar/39Ar-Method on Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.4. Th-U-Total Pb Monazite Dating . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 C.5. U/Pb Dating of Selected Ta-, Nb- and Sn-Oxide Minerals . . . . . . . . . . . . 336 C.6. Fluid Inclusion Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 C.7. Whole Rock Sm/Nd-Isotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 C.8. Lithium Isotope Analysis on Selected Mineral Phases . . . . . . . . . . . . . . . 338 D. Data – Mineral Liberation Analysis 341 E. Data – Geochemistry 345 F. Data – Geochronology 349 G. Data – Stable and Radiogenic Isotopes 353
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography